Newer
Older
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('C://Users//nicon//Doctorado//artiq_experiments//analisis//plots//20230815_RotationalDopplerShift_v3//Data')
"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion +2/+2 y +2/-2 (usando pentaprisma)
"""
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
LOC_FILES = """VaryingBeamlocation/000014398-IR_Scan_withcal_optimized
VaryingBeamlocation/000014399-IR_Scan_withcal_optimized
VaryingBeamlocation/000014400-IR_Scan_withcal_optimized
VaryingBeamlocation/000014401-IR_Scan_withcal_optimized
VaryingBeamlocation/000014402-IR_Scan_withcal_optimized
"""
COMPMERG_FILES = """VaryingCompMerged/000014441-IR_Scan_withcal_optimized
VaryingCompMerged/000014442-IR_Scan_withcal_optimized
"""
TEMP_FILES = """VaryingTemp/000015058-IR_Scan_withcal_optimized
"""
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
LocCounts = []
LocFrequencies = []
for i, fname in enumerate(LOC_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
#Amplitudes.append(np.array(data['datasets']['amplitudes']))
LocCounts.append(np.array(data['datasets']['counts_spectrum']))
LocFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
CompVoltages = []
CompCountsMerged = []
CompFrequencies = []
for i, fname in enumerate(COMPMERG_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
CompVoltages.append(np.array(data['datasets']['scanning_voltages']))
CompCountsMerged.append(np.array(data['datasets']['data_array']))
CompFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
CompCounts = []
for k in range(len(CompFrequencies)):
CompCounts.append(Split(CompCountsMerged[k],len(CompFrequencies[k])))
TempTimes = []
TempCountsMerged = []
TempFrequencies = []
for i, fname in enumerate(TEMP_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
TempTimes.append(np.array(data['datasets']['scanning_heattimes']))
TempCountsMerged.append(np.array(data['datasets']['data_array']))
TempFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
TempCounts = []
for k in range(len(TempFrequencies)):
TempCounts.append(Split(TempCountsMerged[k],len(TempFrequencies[k])))
#%%
import seaborn as sns
"""
Resonancias DD configuracion +2/-2
"""
palette = sns.color_palette("tab10")
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
AmpsVecs = ['Arriba', 'Abajo', 'Izquierda', 'Derecha']
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', color=palette[med],markersize=2, label=f'{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.ylim(800,2200)
plt.grid()
#plt.legend()
plt.title('Espectros para distintas geometrías')
#%%
import seaborn as sns
"""
Resonancias DD configuracion +2/-2
"""
palette = sns.color_palette("tab10")
#powermedvec = [0,1,2,3]
powermedvec = [3,4]
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', color=palette[med],markersize=2, label=f'{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.ylim(800,2200)
plt.grid()
#plt.legend()
plt.title('Espectros para distintas geometrías')
#%%
"""
Pongo para barrer voltajes y que me lo guarde todo mergeado.
La med 0 es barriendo dcA. Hay 8 meds entre -0.33 y 0.02 V. Las dos ultimas no sirven porque se perdio el ion.
La med 1 es barriendo compOven. El ion se perdio asi que no sirven pero igual ya tenia esas meds
"""
med=0
Voltages = CompVoltages[med]
voltvec=[0,1,2,3,4,5]
plt.figure()
for volt in voltvec:
plt.plot([2*f*1e-6 for f in CompFrequencies[med][1:]], CompCounts[med][volt][1:], label=Voltages[volt])
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
#%%
"""
Pongo para barrer temptimes y que me lo guarde todo mergeado. Salio mal igual...
"""
med=0
tempvec=[0,1,2,3,4]
plt.figure()
for med in tempvec:
plt.plot([2*f*1e-6 for f in TempFrequencies[0][1:]], TempCounts[0][med][1:], label=TempTimes[0][med])
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()