Skip to content
RDS_location.py 4.03 KiB
Newer Older
Nicolas Nunez Barreto's avatar
gd
Nicolas Nunez Barreto committed
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230804_RotationalDopplerShift_v2/Data')



"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion +2/+2 y +2/-2 (usando pentaprisma)
"""

def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return idx

LOC_FILES = """VaryingBeamlocation/000014331-IR_Scan_withcal_optimized
VaryingBeamlocation/000014332-IR_Scan_withcal_optimized
VaryingBeamlocation/000014333-IR_Scan_withcal_optimized
VaryingBeamlocation/000014334-IR_Scan_withcal_optimized
VaryingBeamlocation/000014357-IR_Scan_withcal_optimized
VaryingBeamlocation/000014358-IR_Scan_withcal_optimized
"""

def Split(array,n):
    length=len(array)/n
    splitlist = []
    jj = 0
    while jj<length:
        partial = []
        ii = 0
        while ii < n:
            partial.append(array[jj*n+ii])
            ii = ii + 1
        splitlist.append(partial)
        jj = jj + 1
    return splitlist


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(LOC_FILES))


#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

LocCounts = []
LocFrequencies = []

for i, fname in enumerate(LOC_FILES.split()):
    print(str(i) + ' - ' + fname)
    data = h5py.File(fname+'.h5', 'r')
    #Amplitudes.append(np.array(data['datasets']['amplitudes']))
    LocCounts.append(np.array(data['datasets']['counts_spectrum']))
    LocFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))

Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
def linealfunc(x,a,b):
    return a*x+b

def normalizeplot(xvec, yvec,skip=0):
    i_1, i_2, i_3, i_4 = 0, 20, -10-skip, -1-skip
    popt, pcov = curve_fit(linealfunc, list(xvec[i_1:i_2])+list(xvec[i_3:i_4]), list(yvec[i_1:i_2])+list(yvec[i_3:i_4]))
    print(popt)
    yvecnorm = []
    for jj in range(len(yvec)):
        print(linealfunc(xvec[jj],*popt))
        yvecnorm.append(yvec[jj]/linealfunc(xvec[jj],*popt))
    return yvecnorm
Nicolas Nunez Barreto's avatar
gd
Nicolas Nunez Barreto committed

#%%

"""
Resonancias DD configuracion +2/+2
"""

powermedvec = [0,1,2,3]

AmpsVecs = ['Colineal', 'Desplazada', 'Colineal', 'Desplazada']

plt.figure()

ftrap = 22.1

DR1 = 435.8
DR2 = 444.2

jj=0
for med in powermedvec:
    plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', markersize=2, label=f'{AmpsVecs[jj]}')
    jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Espectros para distintas geometrías')

#%%

"""
Resonancias DD configuracion +2/-2 (usando un pentaprisma)
"""

powermedvec = [4,5]

AmpsVecs = ['Colineal', 'Desplazada']

plt.figure()

ftrap = 22.1

DR1 = 435.8
DR2 = 444.2

jj=0
for med in powermedvec:
    plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', markersize=2, label=f'{AmpsVecs[jj]}')
    jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Espectros para distintas geometrías')

Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed

#%%
"""
Resonancias DD comparando +2/+2 con +2/-2 ambas colineales
"""

powermedvec = [2,4]

AmpsVecs = ['Colineal', 'Desplazada']

plt.figure()

ftrap = 22.1

DR1 = 435.8
DR2 = 444.2

jj=0
for med in powermedvec:
    Freqs = [2*f*1e-6 for f in LocFrequencies[med][1:]]
    Counts = [c for c in LocCounts[med][1:]]
    CountsNorm = normalizeplot(Freqs,Counts)
    plt.plot(Freqs,CountsNorm, '-o', markersize=2, label=f'{AmpsVecs[jj]}')
    jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Espectros para distintas geometrías')