Skip to content
CPT_plotter_20230421.py 12.6 KiB
Newer Older
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230421_CPTconmicromocion/Data/')

CPT_FILES = """000011071-IR_Scan_withcal_optimized
000011072-IR_Scan_withcal_optimized
000011073-IR_Scan_withcal_optimized
""" 


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(CPT_FILES))

#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

Counts = []
Freqs = []

AmpTisa = []
UVCPTAmp = []
No_measures = []

for i, fname in enumerate(CPT_FILES.split()):
    print(str(i) + ' - ' + fname)
    #print(fname)
    data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'

    # Aca hago algo repugnante para poder levantar los strings que dejamos
    # que además tenian un error de tipeo al final. Esto no deberá ser necesario
    # cuando se solucione el error este del guardado.
    Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
    Counts.append(np.array(data['datasets']['counts_spectrum']))
    #AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
    UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
    No_measures.append(np.array(data['datasets']['no_measures']))


#%%

"""
Ploteo la cpt de referencia / plotting the reference CPT
"""

jvec = [0]

plt.figure()
i = 0
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()

#%%

"""
Intento mergear 0 1 y 2
"""

jvec = [0]

#f1 = 8.8
#f2 = 17.5
f1 = 8
f2 = 18

Freqs0 = Freqs[0]
Freqs1 = [f+f1*1e6 for f in Freqs[1]]
Freqs2 = [f+f2*1e6 for f in Freqs[2]]

plt.figure()

plt.errorbar([2*f*1e-6 for f in Freqs0], Counts[0], yerr=np.sqrt(Counts[0]), fmt='o', capsize=2, markersize=2)
plt.errorbar([2*f*1e-6 for f in Freqs1], Counts[1], yerr=np.sqrt(Counts[1]), fmt='o', capsize=2, markersize=2)
plt.errorbar([2*f*1e-6 for f in Freqs2], Counts[2], yerr=np.sqrt(Counts[2]), fmt='o', capsize=2, markersize=2)

plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()


Freqs_merged = list(Freqs0) + Freqs1[125:] + Freqs2[126:]
Counts_merged = list(Counts[0]) + list(Counts[1][125:]) + list(Counts[2][126:])

plt.figure()

plt.errorbar([2*f*1e-6 for f in Freqs_merged], Counts_merged, yerr=np.sqrt(np.array(Counts_merged)), fmt='o', capsize=2, markersize=2)



#%%
from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels_MM, GenerateNoisyCPT_MM_fit
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
from scipy.optimize import curve_fit

"""
Ajusto un cpt para obtener todos los parámetros relevantes primero.
I fit a cpt curve to retrieve all the relevant parameters first.
"""

phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 
alpha = 0
noiseamplitude = 0

T = 0.6e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 33.5e6

beta = 0

drivefreq = 2*np.pi*22.135e6
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed

correccion = 12

offsetxpi = 458+correccion
DetDoppler = -2.5   -correccion

FreqsDRpi = [2*f*1e-6-offsetxpi+14 for f in Freqs_merged]
CountsDRpi = Counts_merged

freqslongpi = np.arange(min(FreqsDRpi), max(FreqsDRpi)+FreqsDRpi[1]-FreqsDRpi[0], 0.1*(FreqsDRpi[1]-FreqsDRpi[0]))

#[1.71811842e+04 3.34325038e-17]

def FitEITpi(freqs, SG, SP, BETA, scale, offset):
    temp = 1e-3
    MeasuredFreq, MeasuredFluo = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA, drivefreq, min(freqs), max(freqs), freqs[1]-freqs[0])
    #MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_MM_fit(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA, drivefreq, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
    #scale = 0.3*2e+04
    #offset = 0.3*2e+03
    FinalFluo = [f*scale + offset for f in MeasuredFluo]
    return FinalFluo

popt_fullcpt, pcov_fullcpt = curve_fit(FitEITpi, FreqsDRpi[1:], CountsDRpi, p0=[0.5, 4.5, 1, 1e4, 1e3], bounds=((0, 0, 0, 1e1, 0), (2, 10, 1000, 1e5, 1e5)))
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed

#print(f'Temperatura: ({round(1e3*popt_fullcpt[-1],2)} +- {round(1e3*np.sqrt(pcov_fullcpt[-1][-1]),2)}) mK')


print(popt_fullcpt)
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed

FittedEITpi = FitEITpi(freqslongpi, popt_fullcpt[0], popt_fullcpt[1], 4, popt_fullcpt[3], popt_fullcpt[4])
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
#FittedEITpi = FitEITpi(freqslongpi, *popt_fullcpt)

"""
Ploteo la CPT de referencia junto al ajuste y a la resonancia oscura de interes
I plot the reference CPT along with the fit to the model and the dark resonance of interest
"""

DRs = [-26.5, -18, -11.5, -3]

plt.figure()
plt.errorbar(FreqsDRpi, Counts_merged, yerr=np.sqrt(np.array(Counts_merged)), fmt='o', capsize=2, markersize=2)
for dr in DRs:
    plt.axvline(dr, color='black', alpha=0.5)
    plt.axvline(dr-22.1, color='red', alpha=0.5)
    plt.axvline(dr+22.1, color='blue', alpha=0.2)

plt.plot(freqslongpi, FittedEITpi[1:])


#%%
#ignorar de aca para abajo por ahora

Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
#%%
#i_DR = 955

DRs = [-31, -22, -16.5, -8]

plt.figure()
plt.errorbar(FreqsDRpi, CountsDRpi, yerr=2*np.sqrt(CountsDRpi), fmt='o', capsize=2, markersize=2)
plt.plot(freqslongpi[:-1], FittedEITpi)
for dr in DRs:
    dr = dr+4.7
    plt.axvline(dr, color='red',alpha=0.2)
    plt.axvline(dr+22.1, color='green',alpha=0.2)
    plt.axvline(dr-22.1, color='black',alpha=0.2)
#plt.axvline(DetDoppler-22.1)
#plt.axvline(DetDoppler+22.1)
#plt.plot(freqslongpi[i_DR], FittedEITpi[i_DR],'o', color='red', markersize=12)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')

#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')



#%%
"""
Simulo CPTs con todos esos parámetros para distintas temperaturas
I simulate CPT curves with all the previous parameters but with varying temperatures
"""
TempVecTeorico = list(np.arange(0.3,1,0.1))+list(np.arange(1, 31, 1))
CurvasTeoricas = []

for tempi in TempVecTeorico:
    CurvasTeoricas.append(FitEITpi(freqslongpi, *popt_fullcpt[:-1], tempi*1e-3))



#%%
"""
Acá agarro la primera y busco el valor i_DR que corresponde a la resonancia oscura de interés
With the first one, I look for the value i_DR which corresponds to the dark resonance of interest
"""
curva_ref = CurvasTeoricas[0]

i_DR = 955

plt.figure()

plt.plot(freqslongpi, curva_ref)
plt.plot(freqslongpi[i_DR], curva_ref[i_DR],'o')

#%%
"""
ploteo algunos CPTs teoricos para algunas temperaturas
Plotting some theory cpt curves for some temperatures
"""

plt.plot(freqslongpi, CurvasTeoricas[0])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[0][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[10])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[10][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[20])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[20][i_DR],'o',markersize=10)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Fluorescence')
plt.grid()



#%%
"""
Ahora interpolo los valores teóricos de las profundidades de esas resonancias
y aplico la interpolación a las mediciones para obtener temperaturas.
Luego, grafico las temperaturas en función de los tiempos de calentamiento.

Now I interpolate the theoretical values of the depths of those resonances
and apply the interpolation to the measurements to obtain temperatures.
After that, I plot the temperatures with respect to the heating times
"""
from scipy.interpolate import interp1d

FluosDRTeo = [CurvasTeoricas[k][i_DR] for k in range(len(CurvasTeoricas))]

interpolado = interp1d(FluosDRTeo, TempVecTeorico) #creo funcion que interpola


meas = 0
maxi = 9 #valor maximo, dsp el ion se calento
 
Heating_tim = Times[meas][:maxi]
Heating_tim_ms = [t*1e3 for t in Heating_tim]
Heating_med = [2*c for c in Counts_heating[meas][:maxi]]

ErrorHeating_med = [2*np.sqrt(c) for c in Counts_heating[meas][:maxi]]

Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med]
Error_Temperaturas_interpoladas = [float(interpolado(Heating_med[k]+0.5*ErrorHeating_med[k]))-Temperaturas_interpoladas[k] for k in range(len(Heating_med))]

plt.figure()
plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange')
plt.plot(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000), interpolado(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000)))
plt.xlabel('Cuentas de DR teoricas')
plt.ylabel('Temperatura (mK)')

plt.figure()
#plt.plot(Heating_med, Heating_tim, 'o', color='blue')
plt.errorbar([t*1e3 for t in Heating_tim], Heating_med, yerr=ErrorHeating_med, fmt='o', capsize=2, markersize=5)

plt.ylabel('Cuentas de DR medidas')
plt.xlabel('Heating time (s)')

def lineal(x,a,b):
    return a*x+b

#p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas, sigma=Error_Temperaturas_interpoladas)
p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas)


#%%
"""
Grafico finalmente el plot del heating rate de la trampa
Finally I plot the heating rate of the trap
"""


plt.figure()
#plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o')
plt.errorbar(Heating_tim_ms,Temperaturas_interpoladas, yerr=np.array(Error_Temperaturas_interpoladas), fmt='o', capsize=2, markersize=7, color='black')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1), color='red')
plt.xlabel('Heating time (ms)', fontname='STIXGeneral', fontsize=15)
plt.ylabel('Temperature (mK)', fontname='STIXGeneral', fontsize=15)
plt.grid()
plt.xticks([0, 5, 10, 15, 20 ,25, 30, 35], fontname='STIXGeneral', fontsize=15)
plt.yticks([0, 5, 10, 15], fontname='STIXGeneral', fontsize=15)
plt.title(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms', fontname='STIXGeneral', fontsize=15)
plt.tight_layout()
plt.savefig('Fig_heatingrate.svg')
print(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')


#%%
"""
Ahora voy a ver CPT enteras con tiempos de calentamiento distintos.
Now I see whole CPT curves with different heating times
"""

jvec = [3, 4]

plt.figure()
i = 0
for j in jvec:
    if j==4:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==3:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='5 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()


jvec = [1, 2]

plt.figure()
i = 0
for j in jvec:
    if j==2:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==1:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='1 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()

#%%

"""
La siguiente curva probablemente no este bien medida ya que inmediatamente
despues, los laseres se deslockearon. La dejo por las dudas.

This curve is probably not well measured...

"""

jvec = [5, 6]

plt.figure()
i = 0
for j in jvec:
    if j==6:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==5:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='10 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,3900)
plt.grid()
plt.legend()
plt.title('Ojo: medicion condicionada por derivas')


#%%
"""
Ahora ploteo 6 curvas cpt para distintos valores de potencia del UV

This is a plot of 6 different cpt curves for 6 different UV powers. I should fit them
to obtain saturation parameters
"""


jvec = [7,8,9,10,11,12]

plt.figure()
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
#plt.ylim(1000,2900)
plt.grid()
#plt.legend()