Skip to content
Espectroscpt_cristal.py 5.54 KiB
Newer Older
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230713_EspectrosCristal6iones/Data/')


MOTIONAL_FILES = """000013216-IR_Scan_withcal_optimized_andor
"""



def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(MOTIONAL_FILES))


#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

CountsRoi1 = []
CountsRoi2 = []
CountsRoi3 = []
CountsRoi4 = []
CountsRoi5 = []
CountsRoi6 = []
CountsRoi7 = []
#Amplitudes = []
IR1_Freqs    = []
#IR_amps    = []

for i, fname in enumerate(MOTIONAL_FILES.split()):
    print(str(i) + ' - ' + fname)
    data = h5py.File(fname+'.h5', 'r')
    #Amplitudes.append(np.array(data['datasets']['amplitudes']))
    CountsRoi1.append(np.array(data['datasets']['counts_roi1']))
    #CountsRoi2.append(np.array(data['datasets']['counts_roi2']))
    #CountsRoi3.append(np.array(data['datasets']['counts_roi3']))
    #CountsRoi4.append(np.array(data['datasets']['counts_roi4']))
    #CountsRoi5.append(np.array(data['datasets']['counts_roi5']))
    #CountsRoi6.append(np.array(data['datasets']['counts_roi6']))
    #CountsRoi7.append(np.array(data['datasets']['counts_roi7']))
    IR1_Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
    #IR_amps.append(np.array(data['datasets']['IR1_measurement_amp']))



#%%

"""
En cristal de 7 iones (uno de ellos oscuro) veo espectros. Primero espectros uv.
La roi1 es la general. Las demas son de cada uno de los 6 ioens brillantes del cristal.
"""

i = 0

jvec=[0]

#CountsRois = [CountsRoi2, CountsRoi3, CountsRoi4, CountsRoi5, CountsRoi6, CountsRoi7]

CountsRois = [CountsRoi1]

plt.figure()

f=[1]
for counts in CountsRois:
    plt.plot(IR1_Freqs[0][1:], [c for c in counts[0][1:]], '-o', markersize=2)
    i=i+1
plt.xlabel('Frecuencia')
plt.ylabel('Cuentas ROI')
#plt.xlim(0.05,0.23)
#plt.ylim(15550,16400)
plt.grid()
plt.legend()

#%%

#mergeo mediciones porque medi variando el piezoB para tener mas rango

Frequencies_vector = []
Counts_vector = []

kfin1 = 37
kin2 = 9

for counts in [CountsRoi1, CountsRoi2, CountsRoi3, CountsRoi4, CountsRoi5, CountsRoi6, CountsRoi7]:
    Frequencies_vector.append([1e-6*2*f for f in [Desplazamientos[4]+f for f in UV_Freqs[5][1:kfin1]]+list(UV_Freqs[2][kin2:])])
    Counts_vector.append(list(counts[5][1:kfin1])+list(counts[2][kin2:]))

ivecs = [3,4]

#ivecs = [2, 5, 6]

#ivecs = [1]

plt.figure()
for i in range(len(Frequencies_vector)):
    if i in ivecs:
        plt.plot(Frequencies_vector[i], Counts_vector[i],'-o')
plt.grid()
plt.xlabel('Frequency (MHz)')
plt.ylabel('Counts')

#%%
ftrap=22.1
#ahora intento ajustarlos con modelo con micromocion

from scipy.special import jv
from scipy.optimize import curve_fit

def MicromotionSpectra(det, A, beta, x0, gamma, offset):
    ftrap=22.1
    #gamma=30
    P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+offset
    i = 1
    #print(P)
    while i <= 1:
        P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2) 
        i = i + 1
        #print(P)
    return P


popt_vec = []
pcov_vec = []


#uso como refe k=3
jref=3
popt_ref, pcov_ref = curve_fit(MicromotionSpectra, Frequencies_vector[jref], Counts_vector[jref], p0=[1000, 2, 274, 90, 14000], bounds=((0,0,200,20,0),(1e7,100,600,1000,25650)))

freqslong = np.arange(min(Frequencies_vector[jref]), max(Frequencies_vector[jref])+100, (Frequencies_vector[jref][1]-Frequencies_vector[jref][0])*0.01)

print(popt_ref)
plt.figure()
for j in range(1,len(Frequencies_vector)):
    plt.plot(Frequencies_vector[j], Counts_vector[j])
    if j == jref:
        plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))

for i in range(5):
    plt.axvline(popt_ref[2]-i*ftrap, linestyle='dashed', color='black', linewidth=1, zorder=0)
plt.grid()
#%%
for i in range(len(Frequencies_vector)):
    if i != jref:
        popt, pcov = curve_fit(MicromotionSpectra, Frequencies_vector[i], Counts_vector[i], p0=[popt_ref[0], 5, popt_ref[2], 60, popt_ref[4]], bounds=((popt_ref[0]-0.001*popt_ref[0],0,popt_ref[2]-0.001*popt_ref[2],0,popt_ref[4]-0.001*popt_ref[4]),(popt_ref[0]+0.001*popt_ref[0],100,popt_ref[2]+0.001*popt_ref[2],300, popt_ref[4]+0.001*popt_ref[4])))
        popt_vec.append(popt)
        pcov_vec.append(pcov)
    else:
        popt_vec.append(popt_ref)
        pcov_vec.append(pcov_ref)
        
ftrap=22.1

jeval=1

freqslong = np.arange(min(Frequencies_vector[jeval]), max(Frequencies_vector[jeval])+100, (Frequencies_vector[jeval][1]-Frequencies_vector[jeval][0])*0.01)

print(popt_vec[jeval])
plt.figure()
plt.plot(Frequencies_vector[jeval], Counts_vector[jeval])
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))
plt.axvline(popt_ref[2], linestyle='dashed')
plt.axvline(popt_ref[2]-ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-3*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+3*ftrap, linestyle='dashed')