Skip to content
RDS_temperature.py 5.29 KiB
Newer Older
Nicolas Nunez Barreto's avatar
gd
Nicolas Nunez Barreto committed
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230804_RotationalDopplerShift_v2/Data')



"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion colineal (insensible a velocidad perpendicular)
y configuracion desplazada (sensible).
Primero una gaussiana variando la potencia (power_files).
Luego, variando compensacion con electrodo DCA y con electrodo OVEN.
"""

def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return idx

TEMP_FILES = """VaryingTemp/000014316-IR_Scan_withcal_optimized
"""

def Split(array,n):
    length=len(array)/n
    splitlist = []
    jj = 0
    while jj<length:
        partial = []
        ii = 0
        while ii < n:
            partial.append(array[jj*n+ii])
            ii = ii + 1
        splitlist.append(partial)
        jj = jj + 1
    return splitlist


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(TEMP_FILES))


#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

TempCounts_merged = []
TempTimes = []
TempFrequencies = []

for i, fname in enumerate(TEMP_FILES.split()):
    print(str(i) + ' - ' + fname)
    data = h5py.File(fname+'.h5', 'r')
    #Amplitudes.append(np.array(data['datasets']['amplitudes']))
    TempCounts_merged.append(np.array(data['datasets']['data_array']))
    TempTimes.append(np.array(data['datasets']['scanning_heattimes']))
    TempFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))

TempCounts = []
for k in range(len(TempFrequencies)):
    TempCounts.append(Split(TempCounts_merged[k],len(TempFrequencies[k])))

#%%
#gaussiano
from scipy.signal import savgol_filter as sf
bkgr = 40*5
#bkgr = 0

def arraytreatment0(array):
    #return (array[0]-array[2])/(array[0]-bkgr)
    return array[0]

def arraytreatment1(array):
    #return (array[0]-array[1])/(array[0]-bkgr)
    return array[1]

def arraytreatment2(array):
    #return (array[0]-array[2])/(array[0]-bkgr)
    return array[2]

# def errorarraytreatment1(array):
#     return (array[0]-array[1])/(array[0]-bkgr)
#     #return array[1]

# def errorarraytreatment2(array):
#     return (array[0]-array[2])/(array[0]-bkgr)
#     #return array[1]


Gaussian_measurement = TempCounts[0]
Gaussian_times = TempTimes[0]
Gaussian_dr0depths = []
Gaussian_dr1depths = []
Gaussian_dr2depths = []

ErrorGaussian_dr1depths = []
ErrorGaussian_dr2depths = []


for kk in range(len(Gaussian_times)):
    Gaussian_dr0depths.append(arraytreatment0(Gaussian_measurement[kk]))
    Gaussian_dr1depths.append(arraytreatment1(Gaussian_measurement[kk]))
    Gaussian_dr2depths.append(arraytreatment2(Gaussian_measurement[kk]))

lim = 9

plt.figure()
# plt.plot(Gaussian_voltages, gauss, color='red', label='gaussian', alpha=0.8, zorder=0)
# plt.plot(OAMcol_voltages, OAMcol, color='blue', label='oam colineal', alpha=0.8, zorder=0)
# plt.plot(OAMdesp_voltages, OAMdesp, color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
plt.plot(Gaussian_times[:lim], Gaussian_dr0depths[:lim],'o', color='black', label='gaussian')
plt.plot(Gaussian_times[:lim], Gaussian_dr1depths[:lim],'o', color='red', label='gaussian')
plt.plot(Gaussian_times[:lim], Gaussian_dr2depths[:lim],'o', color='blue', label='gaussian')
#plt.xlim(-0.002, 0.022)
# plt.ylim(0,0.5)
plt.title('Profundidad de resonancia %')
plt.grid()
plt.legend()

#%%

#indexcomp = 20
#end = 30

indexcomp=30

end = len(Gaussian_voltages)

plt.figure()
plt.plot(Gaussian_voltages[:end], [g/gauss[indexcomp] for g in gauss][:end], 'o', color='red', label='gaussian', alpha=0.8, zorder=0)
plt.plot(OAMcol_voltages[:end], [g/OAMcol[indexcomp] for g in OAMcol][:end], 'o', color='blue', label='oam colineal', alpha=0.8, zorder=0)
plt.plot(OAMdesp_voltages[:end], [g/OAMdesp[indexcomp] for g in OAMdesp][:end], 'o', color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
# plt.plot(Gaussian_voltages, Gaussian_dr1depths,'o', color='red', label='gaussian')
# plt.plot(OAMcol_voltages, OAMcol_dr1depths,'o', color='blue', label='oam colineal')
# plt.plot(OAMdesp_voltages, OAMdesp_dr1depths,'o', color='purple', label='oam desplaz')
plt.title(f'Tasa de variacion respecto a valor de referencia {Gaussian_voltages[indexcomp]} mV')
plt.axvline(Gaussian_voltages[indexcomp])

plt.grid()
plt.legend()



#%%

"""
Resonancias DD variando la potencia del IR2
"""

powermedvec = [0,1,2]

AmpsVecs = [0.05, 0.08, 0.12, 0.17, 0.22]

plt.figure()

ftrap = 22.1

DR1 = 435.8
DR2 = 444.2

jj=0
for med in powermedvec:
    plt.plot([2*f*1e-6 for f in PowerIR1_Freqs[med][1:]], [c for c in PowerCounts[med][1:]], '-o', markersize=2, label=f'amp:{AmpsVecs[jj]}')
    jj=jj+1
plt.xlabel('Frecuencia')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Variando potencia de IR2 para potencia de IR1 fija')