Skip to content
Espectros_cristal.py 6.26 KiB
Newer Older
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230713_EspectrosCristal6iones/Data/')


MOTIONAL_FILES = """000013259-UV_Scan_withcal_optimized_andor
000013260-UV_Scan_withcal_optimized_andor
000013261-UV_Scan_withcal_optimized_andor
000013262-UV_Scan_withcal_optimized_andor
000013263-UV_Scan_withcal_optimized_andor
000013264-UV_Scan_withcal_optimized_andor
000013266-UV_Scan_withcal_optimized_andor
000013267-UV_Scan_withcal_optimized_andor
000013268-UV_Scan_withcal_optimized_andor
000013269-UV_Scan_withcal_optimized_andor
000013270-UV_Scan_withcal_optimized_andor
000013271-UV_Scan_withcal_optimized_andor
000013272-UV_Scan_withcal_optimized_andor
"""


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(MOTIONAL_FILES))

#%%
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

CountsRoi1 = []
CountsRoi2 = []
CountsRoi3 = []
CountsRoi4 = []
CountsRoi5 = []
CountsRoi6 = []
CountsRoi7 = []
#Amplitudes = []
UV_Freqs    = []
#IR_amps    = []

for i, fname in enumerate(MOTIONAL_FILES.split()):
    print(str(i) + ' - ' + fname)
    data = h5py.File(fname+'.h5', 'r')
    #Amplitudes.append(np.array(data['datasets']['amplitudes']))
    CountsRoi1.append(np.array(data['datasets']['counts_roi1']))
    CountsRoi2.append(np.array(data['datasets']['counts_roi2']))
    CountsRoi3.append(np.array(data['datasets']['counts_roi3']))
    CountsRoi4.append(np.array(data['datasets']['counts_roi4']))
    CountsRoi5.append(np.array(data['datasets']['counts_roi5']))
    CountsRoi6.append(np.array(data['datasets']['counts_roi6']))
    CountsRoi7.append(np.array(data['datasets']['counts_roi7']))
    UV_Freqs.append(np.array(data['datasets']['UV_Frequencies']))
    #IR_amps.append(np.array(data['datasets']['IR1_measurement_amp']))



#%%

"""
En cristal de 7 iones (uno de ellos oscuro) veo espectros. Primero espectros uv.
La roi1 es la general. Las demas son de cada uno de los 6 ioens brillantes del cristal.
"""

i = 0

jvec=[0,1,2,3,5]

step=0.1e8

Desplazamientos = [0, 0.8*step, 1*step, -1*step, -2*step]

plt.figure()
for j in jvec:
    if i in [2,4]:
        #plt.errorbar(Amplitudes[j], CountsRoi1[j], yerr=np.sqrt(CountsRoi1[j]), color='red', fmt='-o', capsize=2, markersize=2)
        #plt.plot(Amplitudes[j][1:], CountsRoi1[j][1:], 'o',color='red', markersize=2,label=f'UVamp: {UV_amps[j]}')
        plt.plot([Desplazamientos[i]+f for f in UV_Freqs[j][1:]], CountsRoi3[j][1:], '-o', markersize=2)
    i = i + 1
plt.xlabel('Frecuencia')
plt.ylabel('Cuentas ROI')
#plt.xlim(0.05,0.23)
#plt.ylim(7800,8550)
plt.grid()
plt.legend()

#%%

#mergeo mediciones porque medi variando el piezoB para tener mas rango

Frequencies_vector = []
Counts_vector = []

kfin1 = 37
kin2 = 9

for counts in [CountsRoi1, CountsRoi2, CountsRoi3, CountsRoi4, CountsRoi5, CountsRoi6, CountsRoi7]:
    Frequencies_vector.append([1e-6*2*f for f in [Desplazamientos[4]+f for f in UV_Freqs[5][1:kfin1]]+list(UV_Freqs[2][kin2:])])
    Counts_vector.append(list(counts[5][1:kfin1])+list(counts[2][kin2:]))

ivecs = [3,4]

#ivecs = [2, 5, 6]

#ivecs = [1]

plt.figure()
for i in range(len(Frequencies_vector)):
    if i in ivecs:
        plt.plot(Frequencies_vector[i], Counts_vector[i],'-o')
plt.grid()
plt.xlabel('Frequency (MHz)')
plt.ylabel('Counts')

#%%
ftrap=22.1
#ahora intento ajustarlos con modelo con micromocion

from scipy.special import jv
from scipy.optimize import curve_fit

def MicromotionSpectra(det, A, beta, x0, gamma, offset):
    ftrap=22.1
    #gamma=30
    P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+offset
    i = 1
    #print(P)
    while i <= 1:
        P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2) 
        i = i + 1
        #print(P)
    return P


popt_vec = []
pcov_vec = []


#uso como refe k=3
jref=3
popt_ref, pcov_ref = curve_fit(MicromotionSpectra, Frequencies_vector[jref], Counts_vector[jref], p0=[1000, 2, 274, 90, 14000], bounds=((0,0,200,20,0),(1e7,100,600,1000,25650)))

freqslong = np.arange(min(Frequencies_vector[jref]), max(Frequencies_vector[jref])+100, (Frequencies_vector[jref][1]-Frequencies_vector[jref][0])*0.01)

print(popt_ref)
plt.figure()
for j in range(1,len(Frequencies_vector)):
    plt.plot(Frequencies_vector[j], Counts_vector[j])
    if j == jref:
        plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))

for i in range(5):
    plt.axvline(popt_ref[2]-i*ftrap, linestyle='dashed', color='black', linewidth=1, zorder=0)
plt.grid()
#%%
for i in range(len(Frequencies_vector)):
    if i != jref:
        popt, pcov = curve_fit(MicromotionSpectra, Frequencies_vector[i], Counts_vector[i], p0=[popt_ref[0], 5, popt_ref[2], 60, popt_ref[4]], bounds=((popt_ref[0]-0.001*popt_ref[0],0,popt_ref[2]-0.001*popt_ref[2],0,popt_ref[4]-0.001*popt_ref[4]),(popt_ref[0]+0.001*popt_ref[0],100,popt_ref[2]+0.001*popt_ref[2],300, popt_ref[4]+0.001*popt_ref[4])))
        popt_vec.append(popt)
        pcov_vec.append(pcov)
    else:
        popt_vec.append(popt_ref)
        pcov_vec.append(pcov_ref)
        
ftrap=22.1

jeval=1

freqslong = np.arange(min(Frequencies_vector[jeval]), max(Frequencies_vector[jeval])+100, (Frequencies_vector[jeval][1]-Frequencies_vector[jeval][0])*0.01)

print(popt_vec[jeval])
plt.figure()
plt.plot(Frequencies_vector[jeval], Counts_vector[jeval])
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))
plt.axvline(popt_ref[2], linestyle='dashed')
plt.axvline(popt_ref[2]-ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-3*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+3*ftrap, linestyle='dashed')