Newer
Older
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230321_heatingrate/Data/')
CPT_FILES = """000010420-IR_Scan_withcal_optimized
000010436-IR_Scan_withcal_optimized
000010437-IR_Scan_withcal_optimized
000010438-IR_Scan_withcal_optimized
000010439-IR_Scan_withcal_optimized
000010440-IR_Scan_withcal_optimized
000010441-IR_Scan_withcal_optimized
000010425-IR_Scan_withcal_optimized
000010426-IR_Scan_withcal_optimized
000010427-IR_Scan_withcal_optimized
000010428-IR_Scan_withcal_optimized
000010429-IR_Scan_withcal_optimized
000010430-IR_Scan_withcal_optimized
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
HEATING_FILES = """000010422-HeatingRate"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
print(SeeKeys(HEATING_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Counts_heating = []
Times = []
AmpTisa_heating = []
UVCPTAmp_heating = []
No_measures_heating = []
for i, fname in enumerate(HEATING_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Times.append(np.array(data['datasets']['heating_times']))
Counts_heating.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp_heating.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures_heating.append(np.array(data['datasets']['no_measures']))
#%%
"""
"""
jvec = [0]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
#%%
from EITfit.threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
from EITfit.threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
from scipy.optimize import curve_fit
"""
Ajusto un cpt para obtener todos los parámetros relevantes primero.
I fit a cpt curve to retrieve all the relevant parameters first.
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
noiseamplitude = 0
T = 0.6e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 33.5e6
c=3e8
B = (u/(2*np.pi))/c
correccion = 6 #con 3 fitea bien
offsetxpi = 440+1+correccion
DetDoppler = -10.5-correccion
FreqsDRpi = [2*f*1e-6-offsetxpi+14 for f in Freqs[0]]
CountsDRpi = Counts[0]
freqslongpi = np.arange(min(FreqsDRpi), max(FreqsDRpi)+FreqsDRpi[1]-FreqsDRpi[0], 0.1*(FreqsDRpi[1]-FreqsDRpi[0]))
#[1.71811842e+04 3.34325038e-17]
def FitEITpi(freqs, SG, SP, scale, offset, temp):
#temp = 2.9e-4
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#scale = 2.85164232e+04
#offset = 2.16392191e+03
FinalFluo = [f*scale + offset for f in MeasuredFluo]
return FinalFluo
#con doppler broadening solo en uv da: SG, SP, scale, offset, temp
#[4.57165783e-01 8.05907940e+00 6.80017204e+04 3.61150824e-17, 6.77295995e-03]
#con broadening en ambos laseres da
#[4.65604861e-01 8.06781613e+00 6.65914036e+04 4.12611199e-14, 1.80590400e-03]
#esos valores anteriores dan mal la ordenada al origen, cambie correccion y ahora da
#[4.71134671e-01, 7.63142299e+00, 7.30866544e+04, 1.80899906e+02, 1.20863371e-03]
popt_fullcpt, pcov_fullcpt = curve_fit(FitEITpi, FreqsDRpi, CountsDRpi, p0=[0.5, 4.5, 1e4, 1e3, 1e-3], bounds=((0, 0, 0, 0, 0), (2, 10, 1e5, 1e5, 10e-3)))
print(f'Temperatura: ({round(1e3*popt_fullcpt[-1],2)} +- {round(1e3*np.sqrt(pcov_fullcpt[-1][-1]),2)}) mK')
print(popt_fullcpt)
Sat = popt_fullcpt[0]
Det = popt_fullcpt[1]
FittedEITpi = FitEITpi(freqslongpi, *popt_fullcpt)
#%%
"""
Ploteo la CPT de referencia junto al ajuste y a la resonancia oscura de interes
I plot the reference CPT along with the fit to the model and the dark resonance of interest
"""
i_DR = 955
plt.figure()
plt.errorbar(FreqsDRpi, CountsDRpi, yerr=2*np.sqrt(CountsDRpi), fmt='o', capsize=2, markersize=2)
plt.plot(freqslongpi, FittedEITpi)
plt.plot(freqslongpi[i_DR], FittedEITpi[i_DR],'o', color='red', markersize=12)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
#%%
"""
Simulo CPTs con todos esos parámetros para distintas temperaturas
I simulate CPT curves with all the previous parameters but with varying temperatures
TempVecTeorico = list(np.arange(0.3,1,0.1))+list(np.arange(1, 31, 1))
CurvasTeoricas = []
for tempi in TempVecTeorico:
CurvasTeoricas.append(FitEITpi(freqslongpi, *popt_fullcpt[:-1], tempi*1e-3))
#%%
"""
Acá agarro la primera y busco el valor i_DR que corresponde a la resonancia oscura de interés
With the first one, I look for the value i_DR which corresponds to the dark resonance of interest
"""
curva_ref = CurvasTeoricas[0]
i_DR = 955
plt.figure()
plt.plot(freqslongpi, curva_ref)
plt.plot(freqslongpi[i_DR], curva_ref[i_DR],'o')
#%%
"""
ploteo algunos CPTs teoricos para algunas temperaturas
Plotting some theory cpt curves for some temperatures
"""
plt.plot(freqslongpi, CurvasTeoricas[0])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[0][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[10])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[10][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[20])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[20][i_DR],'o',markersize=10)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Fluorescence')
plt.grid()
#%%
"""
Ahora interpolo los valores teóricos de las profundidades de esas resonancias
y aplico la interpolación a las mediciones para obtener temperaturas.
Luego, grafico las temperaturas en función de los tiempos de calentamiento.
Now I interpolate the theoretical values of the depths of those resonances
and apply the interpolation to the measurements to obtain temperatures.
After that, I plot the temperatures with respect to the heating times
"""
from scipy.interpolate import interp1d
FluosDRTeo = [CurvasTeoricas[k][i_DR] for k in range(len(CurvasTeoricas))]
interpolado = interp1d(FluosDRTeo, TempVecTeorico) #creo funcion que interpola
meas = 0
maxi = 9 #valor maximo, dsp el ion se calento
Heating_tim = Times[meas][:maxi]
Heating_tim_ms = [t*1e3 for t in Heating_tim]
Heating_med = [2*c for c in Counts_heating[meas][:maxi]]
ErrorHeating_med = [2*np.sqrt(c) for c in Counts_heating[meas][:maxi]]
Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med]
Error_Temperaturas_interpoladas = [float(interpolado(Heating_med[k]+0.5*ErrorHeating_med[k]))-Temperaturas_interpoladas[k] for k in range(len(Heating_med))]
plt.figure()
plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange')
plt.plot(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000), interpolado(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000)))
plt.xlabel('Cuentas de DR teoricas')
plt.ylabel('Temperatura (mK)')
plt.figure()
plt.errorbar([t*1e3 for t in Heating_tim], Heating_med, yerr=ErrorHeating_med, fmt='o', capsize=2, markersize=5)
plt.ylabel('Cuentas de DR medidas')
plt.xlabel('Heating time (s)')
def lineal(x,a,b):
return a*x+b
#p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas, sigma=Error_Temperaturas_interpoladas)
p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas)
#%%
"""
Grafico finalmente el plot del heating rate de la trampa
#plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o')
plt.errorbar(Heating_tim_ms,Temperaturas_interpoladas, yerr=np.array(Error_Temperaturas_interpoladas), fmt='o', capsize=2, markersize=7, color='black')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1), color='red')
plt.xlabel('Heating time (ms)', fontname='STIXGeneral', fontsize=15)
plt.ylabel('Temperature (mK)', fontname='STIXGeneral', fontsize=15)
plt.xticks([0, 5, 10, 15, 20 ,25, 30, 35], fontname='STIXGeneral', fontsize=15)
plt.yticks([0, 5, 10, 15], fontname='STIXGeneral', fontsize=15)
plt.title(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms', fontname='STIXGeneral', fontsize=15)
plt.tight_layout()
plt.savefig('Fig_heatingrate.svg')
print(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')
#%%
"""
Ahora voy a ver CPT enteras con tiempos de calentamiento distintos.
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
jvec = [3, 4]
plt.figure()
i = 0
for j in jvec:
if j==4:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==3:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='5 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()
jvec = [1, 2]
plt.figure()
i = 0
for j in jvec:
if j==2:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==1:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='1 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()
"""
La siguiente curva probablemente no este bien medida ya que inmediatamente
despues, los laseres se deslockearon. La dejo por las dudas.
"""
jvec = [5, 6]
plt.figure()
i = 0
for j in jvec:
if j==6:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==5:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='10 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,3900)
plt.grid()
plt.legend()
plt.title('Ojo: medicion condicionada por derivas')
#%%
"""
Ahora ploteo 6 curvas cpt para distintos valores de potencia del UV
This is a plot of 6 different cpt curves for 6 different UV powers. I should fit them
to obtain saturation parameters
"""
jvec = [7,8,9,10,11,12]
plt.figure()
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
#plt.ylim(1000,2900)
plt.grid()
#plt.legend()