Skip to content
lolo_CPT_plotter_20231123_multi.py 34.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""


import h5py
import matplotlib.pyplot as plt
import numpy as np
# import sys
# import re
# import ast
from scipy.optimize import curve_fit
# import os
# from scipy import interpolate





#%% Funciones auxiliares

from scipy.stats.distributions import  t,chi2

def estadistica(datos_x,datos_y,modelo,pcov,parametros,nombres=None,alpha=0.05):
    
    if nombres is None:
        nombres = [ f'{j}' for j in range(len(parametros)) ]
    
    # Cantidad de parámetros
    P = len(parametros)
    
    # Número de datos
    N = len(datos_x)
    
    # Grados de libertas (Degrees Of Freedom)
    dof = N-P-1

    # Cauculamos coordenadas del modelo
    # modelo_x    = datos_x if modelo_x_arr is None else modelo_x_arr
    # modelo_y    = modelo( modelo_x, *parametros )
    
    # Predicción del modelo para los datos_x medidos
    prediccion_modelo = modelo( datos_x, *parametros )
    
    # Calculos de cantidades estadísticas relevantes
    COV       = pcov                                      # Matriz de Covarianza
    SE        = np.sqrt(np.diag( COV  ))                        # Standar Error / Error estandar de los parámetros
    residuos  = datos_y - prediccion_modelo               # diferencia enrte el modelo y los datos
    
    SSE       = sum(( residuos )**2 )                     # Resitual Sum of Squares
    SST       = sum(( datos_y - np.mean(datos_y))**2)        # Total Sum of Squares
    
    # http://en.wikipedia.org/wiki/Coefficient_of_determination
    # Expresa el porcentaje de la varianza que logra explicar el modelos propuesto
    Rsq       =  1 - SSE/SST                               # Coeficiente de determinación
    Rsq_adj   = 1-(1-Rsq) * (N-1)/(N-P-1)                  # Coeficiente de determinación Ajustado   
    
    # https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#In_least_squares_regression_analysis
    # Expresa la correlación que hay entre los datos y la predicción del modelo
    r_pearson = np.corrcoef( datos_y ,  prediccion_modelo )[0,1]
    
    # Reduced chi squared
    # https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
    chi2_     = sum( residuos**2 )/N
    chi2_red  = sum( residuos**2 )/(N-P)
    
    # Chi squared test
    chi2_test = sum( residuos**2 / abs(prediccion_modelo) )
    # p-value del ajuste
    p_val  = chi2(dof).cdf( chi2_test )
    
    
    sT = t.ppf(1.0 - alpha/2.0, N - P ) # student T multiplier
    CI = sT * SE                        # Confidence Interval
    
    print('R-squared    ',Rsq)
    print('R-sq_adjusted',Rsq_adj)
    print('chi2         ',chi2_)
    print('chi2_reduced ',chi2_red)
    print('chi2_test    ',chi2_test)
    print('r-pearson    ',r_pearson)
    print('p-value      ',p_val)
    print('')
    print('Error Estandard (SE):')
    for i in range(P):
        print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , SE[i])
    print('')
    print('Intervalo de confianza al '+str((1-alpha)*100)+'%:')
    for i in range(P):
        print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , CI[i])
    
    return dict(R2=Rsq,R2_adj=Rsq_adj,chi2=chi2_,chi2_red=chi2_red,
                chi2_test=chi2_test,r=r_pearson,pvalue=p_val,
                SE=SE,CI=CI)





#%% Importaciones extra

# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py

from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM


PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
    globals()[var_name] = PARAMETROS[var_name]
    print(f'loaded: {var_name}')


#%%

"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')

folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(CPT_FILES))

#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

Counts = []
Freqs = []

AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []

for i, fname in enumerate(CPT_FILES.split()):
    print(str(i) + ' - ' + fname)
    #print(fname)
    data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'

    # Aca hago algo repugnante para poder levantar los strings que dejamos
    # que además tenian un error de tipeo al final. Esto no deberá ser necesario
    # cuando se solucione el error este del guardado.
    Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
    Counts.append(np.array(data['datasets']['data_array']))
    #AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
    UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
    No_measures.append(np.array(data['datasets']['no_measures']))
    Voltages.append(np.array(data['datasets']['scanning_voltages']))

def Split(array,n):
    length=len(array)/n
    splitlist = []
    jj = 0
    while jj<length:
        partial = []
        ii = 0
        while ii < n:
            partial.append(array[jj*n+ii])
            ii = ii + 1
        splitlist.append(partial)
        jj = jj + 1
    return splitlist


CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))


CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))

#%%

"""
Ploteo la cpt de referencia / plotting the reference CPT
"""

jvec = [2] # de la 1 a la 9 vale la pena, despues no

drs = [390.5, 399.5, 406, 413.5]

drive=22.1

Frequencies = Freqs[0]

plt.figure()
i = 0
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Frequencies], CountsSplit[0][j], yerr=np.sqrt(CountsSplit[0][j]), fmt='o', capsize=2, markersize=2)
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
#    plt.axvline(dr)
    #plt.axvline(dr+drive)
plt.legend()

#%%


#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time


#%%
"""
AHORA VAMOS A MEDICIONES CON MAS DE UN ION!!!

Las mediciones estan buenas, habria que ver de ajustarlas bien, yo no lo logre.

"""

"""
Ploteo la cpt de referencia / plotting the reference CPT

1: 2 iones, -100 mV dcA
2: 2 iones, -150 mV dcA
3: 2 iones, -50 mV dcA
4: 2 iones, 5 voltajes (el ion se va en la 4ta medicion y en la 5ta ni esta)
5, 6 y 7: 3 iones en donde el scaneo esta centrado en distintos puntos

"""

jvec = [3] # desde la 1, pero la 4 no porque es un merge de curvitas

plt.figure()
i = 0
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
#    plt.axvline(dr)
    #plt.axvline(dr+drive)
plt.legend()


#%%
"""
Mergeo la 5, 6 y 7
"""

Freqs5 = [2*f*1e-6 for f in Freqs[5]]
Freqs6 = [2*f*1e-6 for f in Freqs[6]]
Freqs7 = [2*f*1e-6 for f in Freqs[7]]

Counts5 = Counts[5]
Counts6 = Counts[6]
Counts7 = Counts[7]

i_1_ini = 0
i_1 = 36
i_2_ini = 0
i_2 = 24

f_1 = 18
f_2 = 30


scale_1 = 0.92
scale_2 = 0.98

#Merged_freqs_test = [f-f_2 for f in Freqs6[i_2_ini:i_2]]+[f-f_1 for f in Freqs5[i_1_ini:i_1]]+Freqs7

#plt.plot(Merged_freqs_test,'o')



Merged_freqs = [f-f_2 for f in Freqs6[0:i_2]]+[f-f_1 for f in Freqs5[0:i_1]]+Freqs7
Merged_counts = [scale_2*c for c in Counts6[0:i_2]]+[scale_1*c for c in Counts5[0:i_1]]+list(Counts7)

Merged_freqs_rescaled = np.linspace(np.min(Merged_freqs),np.max(Merged_freqs),len(Merged_freqs))

#drs = [391.5, 399.5, 405.5, 414]
drs = [370,379,385,391.5]

plt.figure()
i = 0
for j in jvec:
    plt.plot([f-f_1 for f in Freqs5[0:i_1]], [scale_1*c for c in Counts5[0:i_1]],'o')
    plt.plot([f-f_2 for f in Freqs6[0:i_2]], [scale_2*c for c in Counts6[0:i_2]],'o')
    plt.plot(Freqs7, Counts7,'o')
    plt.errorbar(Merged_freqs, Merged_counts, yerr=np.sqrt(Merged_counts), fmt='o', capsize=2, markersize=2)


    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
for dr in drs:
    plt.axvline(dr)
    plt.axvline(dr+drive, color='red', linestyle='dashed', alpha=0.3)
    plt.axvline(dr-drive, color='red', linestyle='dashed', alpha=0.3)

plt.legend()

#%%
"""
ajusto la mergeada de 3 iones
"""

phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

Temp = 0.5e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 32.5e6

#B = (u/(2*np.pi))/c

correccion = -20

offsetxpi = 438+correccion
DetDoppler = -35-correccion-22


gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0


drivefreq = 2*np.pi*22.135*1e6

FreqsDR = [f-offsetxpi for f in Merged_freqs]
CountsDR = Merged_counts

freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))

CircPr = 1
alpha = 0

import numba



@numba.jit
def FitEIT_MM1(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
    #BETA = 1.8
    # SG = 0.6
    # SP = 8.1
    TEMP = 0.1e-3

    #BETA1, BETA2, BETA3 = 0, 0, 2

    Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)

    ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])

    return ScaledFluo1+OFFSET
    #return ScaledFluo1


@numba.jit
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
    #BETA = 1.8
    # SG = 0.6
    # SP = 8.1
    TEMP = 0.1e-3
    freqs = np.array(freqs)

    #BETA1, BETA2, BETA3 = 0, 0, 2

    Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
    Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
    Detunings, Fluorescence3 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA3, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)


    # ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])
    # ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
    # ScaledFluo3 = np.array([f*SCALE3 for f in Fluorescence3])
    # return ScaledFluo1+ScaledFluo2+ScaledFluo3+OFFSET
    Fluorescence1 = np.array(Fluorescence1)
    Fluorescence2 = np.array(Fluorescence2)
    Fluorescence3 = np.array(Fluorescence3)
    return SCALE1*Fluorescence1+SCALE2*Fluorescence2+SCALE3*Fluorescence3+OFFSET




if not 'popt_1ions' in globals().keys():
    t0 = time.time()
    print("Arranamos FIT 1")

    par_ini = [0.65, 7.06, 86070, 3917,  1.64]
    
    popt_1ions, pcov_1ions = curve_fit(FitEIT_MM1, FreqsDR, CountsDR, p0=par_ini, bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 7e3, 10)))
    
    pp1 = estadistica(FreqsDR,CountsDR,FitEIT_MM1,pcov_1ions,popt_1ions,nombres=None,alpha=0.05)
    
    print(f"time: {round(time.time()-t0,1)} seg")



if not 'popt_3ions' in globals().keys():
    t0 = time.time()
    print("Arranamos FIT 1")
    
    par_ini = [0.65, 7.06, 86070, 3917,  1.64]
    popt_1ions, pcov_1ions = curve_fit(FitEIT_MM1, FreqsDR, CountsDR, p0=par_ini, bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 7e3, 10)))
    print(f"time: {round(time.time()-t0,1)} seg")
    
    print("Arranamos FIT 3")
    def fun(freqs, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3):
        SCALE3 = max(1-SCALE2-SCALE1-OFFSET,0)
        Fluorescence3 = FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
        return Fluorescence3/sum(Fluorescence3)
    
    par_ini = popt_1ions.tolist()[:2]+[1/3]*2 + [0.1] +popt_1ions.tolist()[-1:]*3
    bounds  = ((0, 0,  0, 0, 0, 0, 0, 0), 
               (2, 20, 1, 1, 1, 10, 10, 10))
    
    popt_3ions, pcov_3ions = curve_fit(fun, FreqsDR, CountsDR, p0=par_ini,bounds=bounds )
   
    
    print(f"time: {round(time.time()-t0,1)} seg")
    
    freqs = np.array(FreqsDR)
    SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3 = popt_3ions
    SCALE3 = max(1-SCALE2-SCALE1-OFFSET,0)
    # Fluorescence= FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
    Fluorescence= fun(freqs, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3)
    
    
    plt.figure()
    plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
    
    plt.plot(freqs, Fluorescence*sum(CountsDR))
    
    plt.plot(freqs, fun(freqs, *par_ini )*sum(CountsDR))
    
    
#%% Acá hay un ajuste del de 3 iones que da razonable

FreqsDR, CountsDR = np.array(FreqsDR) , np.array(CountsDR)

t0 = time.time()
print("Arranamos FIT 1")

par_ini = [0.65, 7.06, 86070, 3917,  1.64]
popt_1ions, pcov_1ions = curve_fit(FitEIT_MM1, FreqsDR, CountsDR, p0=par_ini, bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 7e3, 10)))
print(f"time: {round(time.time()-t0,1)} seg")




par_ini = popt_1ions.tolist()[:2]+[1/3]*2 + [0.1] +popt_1ions.tolist()[-1:]*3
bounds  = ((0, 0,  0, 0, 0, 0, 0, 0), 
           (2, 20, 1, 1, 1, 10, 10, 10))

# bounds = (-np.inf, np.inf)

plt.figure()
plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
l1, =plt.plot(freqs, fun(freqs, *par_ini )*sum(CountsDR))
plt.draw()

print("Arranamos FIT 3")
def fun(freqs, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3):
    SCALE3 = max(1-SCALE2-SCALE1-OFFSET,0)
    Fluorescence3 = FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
    
    l1.set_ydata(Fluorescence3/sum(Fluorescence3)*sum(CountsDR))
    print(SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3)
    plt.pause(0.1)
    return Fluorescence3/sum(Fluorescence3)


popt_3ions, pcov_3ions = curve_fit(fun, FreqsDR, CountsDR/CountsDR.sum(), p0=par_ini,bounds=bounds )
   

print(f"time: {round(time.time()-t0,1)} seg")

freqs = np.array(FreqsDR)
SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3 = popt_3ions
SCALE3 = max(1-SCALE2-SCALE1-OFFSET,0)
# Fluorescence= FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
Fluorescence= fun(freqs, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, BETA3)

plt.plot(freqs, Fluorescence*sum(CountsDR))

if False:
    popt_3ions = np.array([0.70790618, 7.41165226, 0.1707309 , 0.13974759, 0.02322333,
                           3.69298275, 3.68847693, 1.36216489])
    

#%%
    
    
    
    
    
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))

#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
       #1.53401696e+03, 1.17073206e-06, 2.53804151e+00])


if False:
    # Ejemplo 3 iones
    t0 = time.time()
    freqs, SG, SP = np.array(FreqsDR), 0.65, 7.06
    SCALE1, SCALE2, SCALE3, OFFSET = 1,1,1,1
    BETA1, BETA2, BETA3 = 1.64, 2, 3
    TEMP = 0.1e-3
    Fluorescence3= FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
    print(f"time: {round(time.time()-t0,1)} seg")
    Detunings, Fluorescence = np.array(freqs), np.array(Fluorescence3)
    plt.figure()
    plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
    plt.plot(Detunings, Fluorescence*sum(CountsDR)/sum(Fluorescence))
    

if False:
    # Ejemplo 1 ion
    t0 = time.time()
    freqs, SG, SP, BETA1 = FreqsDR, 0.65, 7.06, 1.64
    TEMP = 0.1e-3
    Detunings, Fluorescence1 =PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
    print(f"time: {round(time.time()-t0,1)} seg")
    Detunings, Fluorescence1 = np.array(Detunings), np.array(Fluorescence1)
    plt.figure()
    plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
    plt.plot(Detunings, Fluorescence1*sum(CountsDR)/sum(Fluorescence1))
    

FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
#FittedEITpi_3ions = FitEIT_MM(freqslong, popt_3ions[0],popt_3ions[1],popt_3ions[2],popt_3ions[3],popt_3ions[4],popt_3ions[5],4,2,0)

#FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)


print(popt_3ions)

plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3ions, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()





#%%
"""
Veo la medicion de varios voltajes uno atras de otro
Se va en medio de la medicion 4, y en la 5 ni esta
"""

jvec = [2] # desde la 1, pero la 4 no porque es un merge de curvitas

Freqs

plt.figure()
i = 0
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[4]], CountsSplit_2ions[0][j], yerr=np.sqrt(CountsSplit_2ions[0][j]), fmt='o', capsize=2, markersize=2)
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
#    plt.axvline(dr)
    #plt.axvline(dr+drive)
plt.legend()


#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time

"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""

phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

Temp = 0.5e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 32.5e6

#B = (u/(2*np.pi))/c

correccion = 27

offsetxpi = 421+correccion
DetDoppler = -16-correccion+5


gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0


drivefreq = 2*np.pi*22.135*1e6

FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]

freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))

CircPr = 1
alpha = 0


def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
    #BETA = 1.8
    # SG = 0.6
    # SP = 8.1
    TEMP = 0.1e-3

    BETA1, BETA2 = 3, 0

    Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
    Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)

    ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
    ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
    return ScaledFluo1+ScaledFluo2
    #return ScaledFluo1


if not 'popt_2ions_1' in globals().keys():
    popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))

#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
       #1.53401696e+03, 1.17073206e-06, 2.53804151e+00])

FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)

# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]

# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])

"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""

"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""

#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])

FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)


print(popt_2ions_1)

plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()


#%%
"""
SUPER AJUSTE PARA MED DE 2 IONES
"""


#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time


phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

Temp = 0.5e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 32.5e6

#B = (u/(2*np.pi))/c

correccion = 13

#DetDoppler = -11.5-correccion

gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0


drivefreq = 2*np.pi*22.135*1e6


SelectedCurveVec = [3]


if not 'popt_SA_vec_2ions' in globals().keys():

    popt_SA_vec_2ions = []
    pcov_SA_vec_2ions = []

    for selectedcurve in SelectedCurveVec:

        FreqsDR = Freqs[selectedcurve]
        CountsDR = Counts[selectedcurve]

        freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))

        CircPr = 1
        alpha = 0


        def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, plot=False):
        #def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
            #BETA = 1.8
            #SG = 0.6
            #SP = 8.1
            # TEMP = 0.2e-3

            freqs = [2*f*1e-6-offset for f in Freqs]

            Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
            Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)

            ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
            ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
            if plot:
                return ScaledFluo1+ScaledFluo2, Detunings
            else:
                return ScaledFluo1+ScaledFluo2
            #return ScaledFluo1

        if True:
            popt_3_SA_2ions, pcov_3_SA_2ions = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[448, -42, 0.6, 8.1, 4e4, 4e4, 6e3, 1, 1.2, 0.5e-3], bounds=((0, -100,0, 0, 0,0,0,0,0, 0), (1000, 0, 2, 20,5e6, 5e6,5e4, 10, 10,10e-3)))

            #popt_3_SA_2ions = [448, -42, 8e4, 6e3, 2, 0.5e-3]


            popt_SA_vec_2ions.append(popt_3_SA_2ions)
            pcov_SA_vec_2ions.append(pcov_3_SA_2ions)

            FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA_2ions, plot=True)
            freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
            FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA_2ions, plot=True)

raise ValueError('Acá tenes que levantar de nuevo los valores que van')


plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()

print(f'listo med {selectedcurve}')
print(popt_3_SA_2ions)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')


#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time

"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""

phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

Temp = 0.5e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 32.5e6

#B = (u/(2*np.pi))/c

correccion = 27

offsetxpi = 421+correccion
DetDoppler = -16-correccion+5


gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0


drivefreq = 2*np.pi*22.135*1e6

FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]

freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))

CircPr = 1
alpha = 0


def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
    #BETA = 1.8
    # SG = 0.6
    # SP = 8.1
    TEMP = 0.1e-3

    BETA1, BETA2 = 3, 0

    Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
    Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe,  BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)

    ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
    ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
    return ScaledFluo1+ScaledFluo2
    #return ScaledFluo1


if not 'popt_2ions_1' in globals().keys():
    popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))

#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
       #1.53401696e+03, 1.17073206e-06, 2.53804151e+00])

FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)

# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]

# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])

"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""

"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""

#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])

FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)


print(popt_2ions_1)

plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()


#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""


#%%

"""
SUPER AJUSTE (SA)


"""

if False:
    GUARDAR = {}
    for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
        print(var)
        GUARDAR[var] = globals()[var]
    print('')
    for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
        print(var)
        GUARDAR[var] = globals()[var]

    print('')
    for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
        print(var)
        GUARDAR[var] = globals()[var]
    print('')
    for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
        print(var)
        GUARDAR[var] = globals()[var]


phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

Temp = 0.5e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 32.5e6