Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
# import sys
# import re
# import ast
from scipy.optimize import curve_fit
# import os
# from scipy import interpolate
from numba import jit,njit
from time import time
#%% Importaciones extra
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
# PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
# for var_name in PARAMETROS.keys():
# globals()[var_name] = PARAMETROS[var_name]
# print(f'loaded: {var_name}')
# Funciones auxiliares
from scipy.stats.distributions import t,chi2
def estadistica(datos_x,datos_y,modelo,pcov,parametros,nombres=None,alpha=0.05):
if nombres is None:
nombres = [ f'{j}' for j in range(len(parametros)) ]
# Cantidad de parámetros
P = len(parametros)
# Número de datos
N = len(datos_x)
# Grados de libertas (Degrees Of Freedom)
dof = N-P-1
# Cauculamos coordenadas del modelo
# modelo_x = datos_x if modelo_x_arr is None else modelo_x_arr
# modelo_y = modelo( modelo_x, *parametros )
# Predicción del modelo para los datos_x medidos
prediccion_modelo = modelo( datos_x, *parametros )
# Calculos de cantidades estadísticas relevantes
COV = pcov # Matriz de Covarianza
SE = np.sqrt(np.diag( COV )) # Standar Error / Error estandar de los parámetros
residuos = datos_y - prediccion_modelo # diferencia enrte el modelo y los datos
SSE = sum(( residuos )**2 ) # Resitual Sum of Squares
SST = sum(( datos_y - np.mean(datos_y))**2) # Total Sum of Squares
# http://en.wikipedia.org/wiki/Coefficient_of_determination
# Expresa el porcentaje de la varianza que logra explicar el modelos propuesto
Rsq = 1 - SSE/SST # Coeficiente de determinación
Rsq_adj = 1-(1-Rsq) * (N-1)/(N-P-1) # Coeficiente de determinación Ajustado
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#In_least_squares_regression_analysis
# Expresa la correlación que hay entre los datos y la predicción del modelo
r_pearson = np.corrcoef( datos_y , prediccion_modelo )[0,1]
# Reduced chi squared
# https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
chi2_ = sum( residuos**2 )/N
chi2_red = sum( residuos**2 )/(N-P)
# Chi squared test
chi2_test = sum( residuos**2 / abs(prediccion_modelo) )
# p-value del ajuste
p_val = chi2(dof).cdf( chi2_test )
sT = t.ppf(1.0 - alpha/2.0, N - P ) # student T multiplier
CI = sT * SE # Confidence Interval
print('R-squared ',Rsq)
print('R-sq_adjusted',Rsq_adj)
print('chi2 ',chi2_)
print('chi2_reduced ',chi2_red)
print('chi2_test ',chi2_test)
print('r-pearson ',r_pearson)
print('p-value ',p_val)
print('')
print('Error Estandard (SE):')
for i in range(P):
print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , SE[i])
print('')
print('Intervalo de confianza al '+str((1-alpha)*100)+'%:')
for i in range(P):
print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , CI[i])
return dict(R2=Rsq,R2_adj=Rsq_adj,chi2=chi2_,chi2_red=chi2_red,
chi2_test=chi2_test,r=r_pearson,pvalue=p_val,
SE=SE,CI=CI)
#%%
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')
folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%% Cargo parámetros fiteados de antes
PARAMETROS = np.load('analisis_superajuste_PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
globals()[var_name] = PARAMETROS[var_name]
print(f'loaded: {var_name}')
if False:
# Esto es para correr en caso de necesidad de limpiar todos los vectores de parametros
print('Limpio los vectores de parámetros')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(f'del {var}')
del(globals()[var])
#%% Definiciones de Numba
@jit
def FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
TEMP, alpha, phidoppler, titadoppler,
phiprobe, titaprobe, BETA1, drivefreq,
min(freqs), max(freqs)+(freqs[1]-freqs[0]),
freqs[1]-freqs[0], circularityprobe=CircPr,
plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1, Detunings
@jit
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
"Esta verison de la función devuelve sólo el eje y, para usar de modelo en un ajuste"
return FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP)[0]
param_names = 'offset DetDoppler SG SP SCALE1 OFFSET BETA1 TEMP'.split()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
La 0 no ajusta bien incluso con todos los parametros libres
De la 1 a la 11 ajustan bien
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9,10,11]
#SelectedCurveVec = [10]
CircPr = 1
alpha = 0
t0 = time()
if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
Estadistica_vec = []
for selectedcurve in SelectedCurveVec:
print(f"{round(time()-t0,1):6.1f}: Procesando la curva {selectedcurve}")
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
if True:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single_plot(FreqsDR, *popt_3_SA)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single_plot(freqslong, *popt_3_SA)
# estadistica(datos_x,datos_y,modelo,pcov,parametros,nombres=None,alpha=0.05)
est_tmp = estadistica(FreqsDR,CountsDR,FitEIT_MM_single,pcov_3_SA,popt_3_SA,
nombres=param_names,alpha=0.05)
Estadistica_vec.append(est_tmp)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Graficamos todos los fiteos
# tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec)
# for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve in zip(*tmp_datos):
# plt.figure()
# plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
# plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
# #plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# plt.xlabel('Detuning (MHz)')
# plt.ylabel('Counts')
# plt.legend(loc='upper left', fontsize=20)
# plt.grid()
# print(f'listo med {selectedcurve}')
# print(popt_3_SA)
fig, axx = plt.subplots( 3,4, figsize=(13,8) , constrained_layout=True, sharex=True , sharey=True )
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec,axx.flatten())
for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve,ax in zip(*tmp_datos):
ax.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.3, capsize=2, markersize=2)
ax.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='black', linewidth=2, label=f'med {selectedcurve}', alpha=0.7)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# ax.set_xlabel('Detuning (MHz)')
# ax.set_ylabel('Counts')
ax.legend(loc='upper left', fontsize=12)
ax.grid(True, ls=":")
print(f'listo med {selectedcurve}')
print(popt_3_SA)
for ax in axx[:,0]:
ax.set_ylabel('Counts')
for ax in axx[-1,:]:
ax.set_xlabel('Detuning (MHz)')
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Inspección de parámetros
param_names = 'offset DetDoppler SG SP SCALE1 OFFSET BETA1 TEMP'.split()
err_vecs = np.array([ np.sqrt(np.diag(el)) for el in pcov_SA_vec ])
num_med = np.arange(len(pcov_SA_vec)) +1
r2_values = np.array([ el['R2_adj'] for el in Estadistica_vec ])
fig, axx = plt.subplots( len(popt_SA_vec[0])+1,1, figsize=(13,8) , constrained_layout=True, sharex=True , sharey=False )
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
for ax,param_vec,err_vec,par_name in zip(axx,popt_SA_vec.T,err_vecs.T,param_names) :
ax.plot(num_med, param_vec, '.-')
ax.errorbar( num_med, param_vec, yerr=err_vec,
fmt='s', mfc='none', elinewidth = 1, capsize=3, ms=1)
ax.grid(True, ls=":", color='lightgray')
ax.set_ylabel(par_name)
ax=axx[-1]
ax.plot( num_med , r2_values, '.-')
ax.set_ylabel(r'$R^2$')
ax.grid(True, ls=":", color='lightgray')
fig.align_ylabels()
ax.set_xticks(num_med)
ax.set_xlabel('Num. de medición')
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
# plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
print(f'\n\nTE FALTA DEFINIR LA VARIABLE minimum_voltage\n\n')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
ftrap=22.1
gamma=21
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
"""
Temperatura vs beta con un ajuste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:10], [t*1e3 for t in Temp_vec[:10]],p0=(-10, -10, 1)) #esto ajusta muy bien
print(popt_rho22_raw)
betaslong = np.arange(0,2*2.7,0.01)
print(f'Min temp predicted: {InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw)[100]}')
plt.figure()
plt.errorbar(Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],xerr=ErrorBetas_vec[:10], yerr=[t*1e3 for t in ErrorTemp_vec[:10]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
#plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.plot(betaslong,InverseMicromotionSpectra(betaslong,*popt_rho22),label='Ajuste cuadratico')
plt.plot(betaslong,InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw),label='Ajuste cuadratico')
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
if False:
GUARDAR = {}
# for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('analisis_superajuste_PARAMETROS.npz', **GUARDAR )