Commit 10a38c15 authored by Muriel Bonetto's avatar Muriel Bonetto

cambios en las carpetas con _muri y en Thermometry_v2. Incluyo todo lo relacionado a promediados

parent 9034d4f4
...@@ -18,6 +18,16 @@ from scipy.optimize import curve_fit ...@@ -18,6 +18,16 @@ from scipy.optimize import curve_fit
import random import random
from scipy.signal import savgol_filter as sf from scipy.signal import savgol_filter as sf
from scipy.stats import norm from scipy.stats import norm
def prob_energia(E,T):
kboltz = 1.380649e-23
mcalcio = 6.655e-23*1e-3
prob = np.exp(-E/(kboltz*T)) #*E**2
return prob
def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False): def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False):
""" """
...@@ -37,8 +47,9 @@ def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinew ...@@ -37,8 +47,9 @@ def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinew
velvec = np.linspace(-4*sigmaT,4*sigmaT,100) velvec = np.linspace(-4*sigmaT,4*sigmaT,100)
MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT) MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT)
MBprobVec = MBprobVec/np.trapz(MBprobVec,velvec)
for i in range(len(velvec)): for i in range(len(velvec)):
detVel = (detpvec - kp*velvec[i])/(2*np.pi*1e6) detVel = detpvec - kp*velvec[i]/(2*np.pi*1e6)
_, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler-kg*velvec[i]/(2*np.pi*1e6),u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=detVel) _, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler-kg*velvec[i]/(2*np.pi*1e6),u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=detVel)
FluorescencesVel.append(Fluorescence) FluorescencesVel.append(Fluorescence)
...@@ -54,21 +65,29 @@ def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinew ...@@ -54,21 +65,29 @@ def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinew
else: else:
drivefreq =2*np.pi* 1e3 drivefreq =2*np.pi* 0.6e6
FluorescencesVel = [] FluorescencesVel = []
sigmaT = np.sqrt(T*kboltz/m) sigmaT = np.sqrt(T*kboltz/m)
velvec = np.linspace(-4*sigmaT,4*sigmaT,100) velvec = np.linspace(-4*sigmaT,4*sigmaT,100)
MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT) MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT)
Evec = np.linspace(0,8*kboltz*T,100)
velvec = np.zeros(2*len(Evec))
velvec= np.sqrt(2 * Evec/m)
MBprobVec = prob_energia(Evec, T)
MBprobVec = MBprobVec/np.trapz(MBprobVec,Evec)
betagVec = velvec*kg/drivefreq betagVec = velvec*kg/drivefreq
betapVec = velvec*kp/drivefreq betapVec = velvec*kp/drivefreq
for i in range(len(betagVec)): for i in range(len(betagVec)):
betag,betap = betagVec[i],betapVec[i] betag,betap = betagVec[i],betapVec[i]
Frequencies, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler,u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=None) Frequencies, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler,u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=detpvec)
FluorescencesVel.append(Fluorescence) FluorescencesVel.append(Fluorescence)
FluorescencesVel = np.array(FluorescencesVel) FluorescencesVel = np.array(FluorescencesVel)
MBprobMat = np.tile(MBprobVec,(FluorescencesVel.shape[1],1)).T MBprobMat = np.tile(MBprobVec,(FluorescencesVel.shape[1],1)).T
Fluorescence = np.trapz(FluorescencesVel*MBprobMat,velvec,axis = 0) Fluorescence = np.trapz(FluorescencesVel*MBprobMat,Evec,axis = 0)
ProbeDetuningVectorL = Frequencies ProbeDetuningVectorL = Frequencies
#print('Done, Total time: ', round((tfinal-tinicial), 2), "s") #print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
...@@ -106,15 +125,25 @@ def SmoothNoisyCPT(Fluo, window=11, poly=3): ...@@ -106,15 +125,25 @@ def SmoothNoisyCPT(Fluo, window=11, poly=3):
def fitCPT_8levels(Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False,dephasing = False, boltzmann = False ): def fitCPT_8levels(Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,betag,betar, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False,dephasing = False, boltzmann = False ):
def SpectrumForFit(Freq,sg,sp,T,DetDoppler): def SpectrumForFit(Freq,sg,sp,T,DetDoppler,A,bgnd,f0):
freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=Freq) Freq = Freq - f0
return spectra freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag,betar, drivefreq, freqMin, freqMax, freqStep,circularityprobe=1, plot=False, detpvec=Freq, dephasing = dephasing, boltzmann = boltzmann)
return spectra*A + bgnd
popt,pcov = curve_fit(SpectrumForFit,Freq,Fluo,p0 = [sg,sp,T,DetDoppler],bounds = ([0.01,0.01,0.00001,-50e6],[1,20,1,30e6])) popt,pcov = curve_fit(SpectrumForFit,Freq,Fluo,p0 = [sg,sp,T,DetDoppler,20000,800,432],bounds = ([0.1,1,0.5e-3,-30,10000,0,420],[0.8,10,10e-3,0,100000,1000,500]))
fitted_spectra = SpectrumForFit(Freq,*popt) fitted_spectra = SpectrumForFit(Freq,*popt)
return Freq, fitted_spectra,popt,pcov return Freq, fitted_spectra,popt,pcov
def try_fitCPT_8levels(A,bgnd,f0,Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,betag,betar, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False,dephasing = False, boltzmann = False ):
def SpectrumForFit(Freq,sg,sp,T,DetDoppler,A,bgnd,f0):
Freq = Freq - f0
freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag,betar, drivefreq, freqMin, freqMax, freqStep,circularityprobe=1, plot=False, detpvec=Freq, dephasing = dephasing, boltzmann = boltzmann)
return spectra*A + bgnd
return SpectrumForFit(Freq, sg, sp, T, DetDoppler, A, bgnd, f0)
\ No newline at end of file
...@@ -10,24 +10,106 @@ Created on Tue Sep 1 17:58:39 2020 ...@@ -10,24 +10,106 @@ Created on Tue Sep 1 17:58:39 2020
import os import os
import numpy as np import numpy as np
from MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels, GenerateNoisyCPT_vel, SmoothNoisyCPT, PerformExperiment_8levels_vel from MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels, GenerateNoisyCPT_vel, SmoothNoisyCPT, PerformExperiment_8levels_vel,fitCPT_8levels,try_fitCPT_8levels
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import time import time
import h5py import h5py
def MB_prob(vel,T): os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20231218_CPT_muri/Data')
return (m/(2*np.pi*kboltz*T))**(3/2)*2* vel**2 *np.exp(-vel**2 * m/(2*kboltz*T))
CPT_FILES = """000016262-IR_Scan_withcal_optimized
000016239-IR_Scan_withcal_optimized
000016240-IR_Scan_withcal_optimized
000016241-IR_Scan_withcal_optimized
000016244-IR_Scan_withcal_optimized
000016255-IR_Scan_withcal_optimized
000016256-IR_Scan_withcal_optimized
000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
def MB_prob_1d(vel,T):
return np.sqrt(m/(2*np.pi*kboltz*T))*np.exp(-vel**2 * m/(2*kboltz*T))
#plt.rcParams.update({ CountsSplit_2ions = []
# "text.usetex": True, CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
# "font.family": "CM Roman"
#})
#%%
"""
Para distintos valores de j hay curvas CPT variando compensación.
Las que valen la pena son de la 1 a la 9.
En particular, la 4 tiene poca micromoción:
"""
jvec = [4] # de la 1 a la 9 vale la pena, despues no
drive=22.1
Frequencies = Freqs[0]
plt.figure()
i = 0
for j in jvec:
#plt.errorbar([2*f*1e-6-419-13 for f in Frequencies], CountsSplit[0][j], yerr=np.sqrt(CountsSplit[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
plt.rcParams["axes.prop_cycle"] = plt.cycler('color', ['#DBAD1F', '#C213DB', '#DB4F2A', '#0500DB', '#09DB9B', '#B4001B', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']) plt.rcParams["axes.prop_cycle"] = plt.cycler('color', ['#DBAD1F', '#C213DB', '#DB4F2A', '#0500DB', '#09DB9B', '#B4001B', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])
...@@ -46,10 +128,10 @@ B = (u/(2*np.pi))/c ...@@ -46,10 +128,10 @@ B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1 #ancho de linea de los laseres en MHz lw = 0.5 #ancho de linea de los laseres en MHz
DopplerLaserLinewidth, ProbeLaserLinewidth = lw, lw #ancho de linea de los laseres DopplerLaserLinewidth, ProbeLaserLinewidth = lw, lw #ancho de linea de los laseres
DetDoppler = -15 #detuning doppler en MHz DetDoppler = -24.5 #detuning doppler en MHz
T = 0.1e-3 #temperatura en K T = 0.1e-3 #temperatura en K
alpha = 0 #angulo entre los láseres alpha = 0 #angulo entre los láseres
...@@ -64,18 +146,18 @@ CircPr = 1 ...@@ -64,18 +146,18 @@ CircPr = 1
#Parametros de la simulacion cpt todo en MHz #Parametros de la simulacion cpt todo en MHz
center = -15 center = -15
span = 30 span = 80
freqMin = center-span*0.5 freqMin = center-span*0.5
freqMax = center+span*0.5 freqMax = center+span*0.5
freqStep = 0.5 freqStep = 0.25
print(freqMin,freqMax,freqStep) print(freqMin,freqMax,freqStep)
noiseamplitude = 0 noiseamplitude = 0
#parametros de saturacion de los laseres. g: doppler. p: probe (un rebombeo que scanea), r: repump (otro rebombeo fijo) #parametros de saturacion de los laseres. g: doppler. p: probe (un rebombeo que scanea), r: repump (otro rebombeo fijo)
sg = 0.3 sg = 0.25
sp = 3 sp = 5.0
drivefreq=2*np.pi*22.135*1e6 drivefreq=2*np.pi*22.135*1e6
...@@ -97,17 +179,17 @@ Tvec = np.linspace(0.5e-3,100e-3,15) ...@@ -97,17 +179,17 @@ Tvec = np.linspace(0.5e-3,100e-3,15)
#Tvec = np.linspace(0.001,0.1,20) #Tvec = np.linspace(0.001,0.1,20)
s12vec = np.linspace(0.2,0.6,20) s12vec = np.linspace(0.2,0.6,20)
#s12vec = [s12vec[2],s12vec[4],s12vec[10],s12vec[18]] #s12vec = [s12vec[2],s12vec[4],s12vec[10],s12vec[18]]
s12vec = [0.28] s12vec = [0.51]
s23vec = np.linspace(0.5,15,20) s23vec = np.linspace(0.5,15,20)
#s23vec = [s23vec[2],s23vec[6],s23vec[10],s23vec[18]] #s23vec = [s23vec[2],s23vec[6],s23vec[10],s23vec[18]]
s23vec = [10] s23vec = [3.5]
Tmat = np.zeros((len(s12vec),len(s23vec))) Tmat = np.zeros((len(s12vec),len(s23vec)))
Tvec_ajuste = np.zeros(len(Tvec)) Tvec_ajuste = np.zeros(len(Tvec))
phivect = 0 phivect = 0
T = 10e-3 T = 8e-3
titavect = np.linspace(0,2*np.pi,100) titavect = np.linspace(0,2*np.pi,100)
...@@ -115,58 +197,134 @@ betag = 0 ...@@ -115,58 +197,134 @@ betag = 0
betap = 0 betap = 0
alpha = 0 alpha = 0
SCALE = 5.60485992e+04
SCALE = 1
OFFSET = 0
OFFSET = 1.55401398e+02
Freq,Fluo_sb = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False) Freq,Fluo_sb = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False)
Freq,Fluo_boltz = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = True) Freq,Fluo_boltz = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = True)
T = 0.8e-3
Freq,Fluo_deph = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = True, boltzmann = False) Freq,Fluo_deph = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = True, boltzmann = False)
#%%
plt.plot(Freq,Fluo_boltz,label = 'Velocities') plt.plot(Freq,SCALE*Fluo_boltz+OFFSET,label = 'Semiclassic')
plt.plot(Freq,Fluo_sb,label = 'Sideband') plt.plot(Freq,SCALE*Fluo_sb+OFFSET,label = 'Sideband')
plt.plot(Freq,Fluo_deph, label = 'Dephasing') plt.plot(Freq,SCALE*Fluo_deph+OFFSET, label = 'Dephasing')
plt.legend() plt.legend()
#%% #%%
os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20230920_CPT_TemperatureSens_v2/Data/') from scipy.optimize import curve_fit
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.5
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 4
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, TEMP,f0):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
BETA1 = 0
BETA2 = 0
Detunings, Fluorescence1 = PerformExperiment_8levels(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=np.array(freqs)-f0)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
popt_1 = [4.82483692e-01, 8.18685518e+00, 6.48238914e+04, 1.54835760e+02, 5.56566519e-03, 5.24515673e-18]
do_fit = True
if do_fit:
#popt_1, pcov_1 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.2, 5, 6.89e4, 1.2723, 8e-3,1], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 7e4, 5e4, 15e-3,5)))
FittedEITpi_1 = FitEIT_MM_single(freqslong, *popt_1)
beta1 = popt_1[4]
errorbeta1 = np.sqrt(pcov_1[4,4])
temp1 = popt_1[5]
errortemp1 = np.sqrt(pcov_1[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_1, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
CPT_FILES = """000011345-IR_Scan_withcal_optimized
000011331-IR_Scan_withcal_optimized
"""
for i in range(0,9):
CPT_FILES = CPT_FILES + f'0000153{19 + i}-IR_Scan_withcal_optimized\n'
CPT_FILES = CPT_FILES
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
...@@ -250,7 +250,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3): ...@@ -250,7 +250,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
kboltzmann = 1.38e-23 #J/K kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio)) gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(mcalcio))
return gammaD return gammaD
...@@ -264,10 +264,16 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp ...@@ -264,10 +264,16 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp
""" """
kg = 397e9
kp = 866e9
fg = kg**2/(kg**2+kp**2)
fp = kp**2/(kg**2+kp**2)
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T) db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + (db/2)**2)/2 lwg = np.sqrt(lwg**2 + (fg*db)**2)
lwp = np.sqrt(lwp**2 + (db/2)**2)/2 lwp = np.sqrt(lwp**2 + (fp*db)**2)
...@@ -306,15 +312,18 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp ...@@ -306,15 +312,18 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwp) M = CalculateSingleMmatrix(gPS, gPD, lwg, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M) L0 = np.array(np.matrix(Lfullpartial) + M)
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 7
#print(nmax)
Ltemp, Omega = LtempCalculus(betag,betap, drivefreq)
#print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
#HASTA ACA
if betag !=0 and betap !=0:
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 2*int(betag)
#print(nmax)
Ltemp, Omega = LtempCalculus(betag,betap, drivefreq)
#print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
#HASTA ACA
else:
Lfull = L0
#NORMALIZACION DE RHO #NORMALIZACION DE RHO
i = 0 i = 0
while i < 64: while i < 64:
...@@ -422,6 +431,9 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp ...@@ -422,6 +431,9 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp
else: else:
DetProbeVector = detpvec*1e6 * 2*np.pi DetProbeVector = detpvec*1e6 * 2*np.pi
Detg = 2*np.pi*Detg*1e6 Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6 #lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
...@@ -463,7 +475,7 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp ...@@ -463,7 +475,7 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK') plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend() plt.legend()
return DetProbeVectorMHz, Fluovector return DetProbeVectorMHz, np.array(Fluovector)
def CPTspectrum8levels_vel(velvect,titavec,phivec,probvel,sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1): def CPTspectrum8levels_vel(velvect,titavec,phivec,probvel,sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
...@@ -613,7 +625,7 @@ def CPTspectrum8levels_vel(velvect,titavec,phivec,probvel,sg, sp, gPS, gPD, Detg ...@@ -613,7 +625,7 @@ def CPTspectrum8levels_vel(velvect,titavec,phivec,probvel,sg, sp, gPS, gPD, Detg
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK') plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend() plt.legend()
return DetProbeVectorMHz, Fluovector return DetProbeVectorMHz, np.array(Fluovector)
if __name__ == "__main__": if __name__ == "__main__":
......
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/')
CPT_FILES = """000016262-IR_Scan_withcal_optimized
000016239-IR_Scan_withcal_optimized
000016240-IR_Scan_withcal_optimized
000016241-IR_Scan_withcal_optimized
000016244-IR_Scan_withcal_optimized
000016255-IR_Scan_withcal_optimized
000016256-IR_Scan_withcal_optimized
000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
jvec = [4] # de la 1 a la 9 vale la pena, despues no
drs = [390.5, 399.5, 406, 413.5]
drive=22.1
Frequencies = Freqs[0]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Frequencies], CountsSplit[0][j], yerr=np.sqrt(CountsSplit[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 1
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+3*0.8
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 1
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_1 = FitEIT_MM_single(freqslong, *popt_1)
beta1 = popt_1[4]
errorbeta1 = np.sqrt(pcov_1[4,4])
temp1 = popt_1[5]
errortemp1 = np.sqrt(pcov_1[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_1, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 2
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+1.6
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 2
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_2, pcov_2 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_2 = FitEIT_MM_single(freqslong, *popt_2)
beta2 = popt_2[4]
errorbeta2 = np.sqrt(pcov_2[4,4])
temp2 = popt_2[5]
errortemp2 = np.sqrt(pcov_2[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2, color='darkolivegreen', linewidth=3, label='med 2')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 3
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+0.8
DetDoppler = -11.5-correccion
print(offsetxpi,DetDoppler)
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 3
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3, pcov_3 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_3 = FitEIT_MM_single(freqslong, *popt_3)
beta3 = popt_3[4]
errorbeta3 = np.sqrt(pcov_3[4,4])
temp3 = popt_3[5]
errortemp3 = np.sqrt(pcov_3[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3, color='darkolivegreen', linewidth=3, label='med 3')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 4
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 4
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_4, pcov_4 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_4 = FitEIT_MM_single(freqslong, *popt_4)
beta4 = popt_4[4]
errorbeta4 = np.sqrt(pcov_4[4,4])
temp4 = popt_4[5]
errortemp4 = np.sqrt(pcov_4[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_4, color='darkolivegreen', linewidth=3, label='med 4')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 5
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-1
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 5
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
#TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_5, pcov_5 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_5 = FitEIT_MM_single(freqslong, *popt_5)
beta5 = popt_5[4]
errorbeta5 = np.sqrt(pcov_5[4,4])
temp5 = popt_5[5]
errortemp5 = np.sqrt(pcov_5[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_5, color='darkolivegreen', linewidth=3, label='med 5')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 6
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-2.2
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_6, pcov_6 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 5e4, 1e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_6 = FitEIT_MM_single(freqslong, *popt_6)
beta6 = popt_6[4]
errorbeta6 = np.sqrt(pcov_6[4,4])
temp6 = popt_6[5]
errortemp6 = np.sqrt(pcov_6[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_6, color='darkolivegreen', linewidth=3, label='med 6')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 7
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-3.7
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 7
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_7, pcov_7 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_7 = FitEIT_MM_single(freqslong, *popt_7)
beta7 = popt_7[4]
errorbeta7 = np.sqrt(pcov_7[4,4])
temp7 = popt_7[5]
errortemp7 = np.sqrt(pcov_7[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_7, color='darkolivegreen', linewidth=3, label='med 7')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 8
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-4.9
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 8
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = False
if do_fit:
popt_8, pcov_8 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_8 = FitEIT_MM_single(freqslong, *popt_8)
beta8 = popt_8[4]
errorbeta8 = np.sqrt(pcov_8[4,4])
temp8 = popt_8[5]
errortemp8 = np.sqrt(pcov_8[5,5])
print()
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_8, color='darkolivegreen', linewidth=3, label='med 8')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 9
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 16
offsetxpi = 419+correccion-6
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 9
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
#TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_9, pcov_9 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10,10e-3)))
FittedEITpi_9 = FitEIT_MM_single(freqslong, *popt_9)
beta9 = popt_9[4]
errorbeta9 = np.sqrt(pcov_9[4,4])
temp9 = popt_9[5]
errortemp9 = np.sqrt(pcov_9[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_9, color='darkolivegreen', linewidth=3, label='med 9')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
#SelectedCurveVec = [9]
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
"""
Temperatura vs beta con un aju8ste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec,[t*1e3 for t in Temp_vec])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec,[t*1e3 for t in Temp_vec],p0=(1,10))
betaslong = np.arange(0,2.7,0.01)
plt.figure()
plt.errorbar(Betas_vec,[t*1e3 for t in Temp_vec],xerr=ErrorBetas_vec, yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
"""
AHORA VAMOS A MEDICIONES CON MAS DE UN ION!!!
"""
"""
Ploteo la cpt de referencia / plotting the reference CPT
1: 2 iones, -100 mV dcA
2: 2 iones, -150 mV dcA
3: 2 iones, -50 mV dcA
4: 2 iones, 5 voltajes (el ion se va en la 4ta medicion y en la 5ta ni esta)
5, 6 y 7: 3 iones en donde el scaneo esta centrado en distintos puntos
"""
jvec = [3] # desde la 1, pero la 4 no porque es un merge de curvitas
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
"""
Mergeo la 5, 6 y 7
"""
Freqs5 = [2*f*1e-6 for f in Freqs[5]]
Freqs6 = [2*f*1e-6 for f in Freqs[6]]
Freqs7 = [2*f*1e-6 for f in Freqs[7]]
Counts5 = Counts[5]
Counts6 = Counts[6]
Counts7 = Counts[7]
i_1_ini = 0
i_1 = 36
i_2_ini = 0
i_2 = 24
f_1 = 18
f_2 = 30
scale_1 = 0.92
scale_2 = 0.98
#Merged_freqs_test = [f-f_2 for f in Freqs6[i_2_ini:i_2]]+[f-f_1 for f in Freqs5[i_1_ini:i_1]]+Freqs7
#plt.plot(Merged_freqs_test,'o')
Merged_freqs = [f-f_2 for f in Freqs6[0:i_2]]+[f-f_1 for f in Freqs5[0:i_1]]+Freqs7
Merged_counts = [scale_2*c for c in Counts6[0:i_2]]+[scale_1*c for c in Counts5[0:i_1]]+list(Counts7)
Merged_freqs_rescaled = np.linspace(np.min(Merged_freqs),np.max(Merged_freqs),len(Merged_freqs))
#drs = [391.5, 399.5, 405.5, 414]
drs = [370,379,385,391.5]
plt.figure()
i = 0
for j in jvec:
plt.plot([f-f_1 for f in Freqs5[0:i_1]], [scale_1*c for c in Counts5[0:i_1]],'o')
plt.plot([f-f_2 for f in Freqs6[0:i_2]], [scale_2*c for c in Counts6[0:i_2]],'o')
plt.plot(Freqs7, Counts7,'o')
plt.errorbar(Merged_freqs, Merged_counts, yerr=np.sqrt(Merged_counts), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
for dr in drs:
plt.axvline(dr)
plt.axvline(dr+drive, color='red', linestyle='dashed', alpha=0.3)
plt.axvline(dr-drive, color='red', linestyle='dashed', alpha=0.3)
plt.legend()
#%%
"""
ajusto la mergeada de 3 iones
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = -20
offsetxpi = 438+correccion
DetDoppler = -35-correccion-22
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [f-offsetxpi for f in Merged_freqs]
CountsDR = Merged_counts
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
#BETA1, BETA2, BETA3 = 0, 0, 2
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence3 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA3, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
ScaledFluo3 = np.array([f*SCALE3 for f in Fluorescence3])
return ScaledFluo1+ScaledFluo2+ScaledFluo3+OFFSET
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3ions, pcov_3ions = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.6, 6.2, 3.5e5, 3.5e5, 3.5e5, 2e3, 1, 1, 1], bounds=((0, 0, 0, 0, 0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 5e8, 7e3, 10, 10, 10)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
#FittedEITpi_3ions = FitEIT_MM(freqslong, popt_3ions[0],popt_3ions[1],popt_3ions[2],popt_3ions[3],popt_3ions[4],popt_3ions[5],4,2,0)
#FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
print(popt_3ions)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3ions, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
Veo la medicion de varios voltajes uno atras de otro
Se va en medio de la medicion 4, y en la 5 ni esta
"""
jvec = [2] # desde la 1, pero la 4 no porque es un merge de curvitas
Freqs
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[4]], CountsSplit_2ions[0][j], yerr=np.sqrt(CountsSplit_2ions[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
SUPER AJUSTE PARA MED DE 2 IONES
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [3]
popt_SA_vec_2ions = []
pcov_SA_vec_2ions = []
for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
#SG = 0.6
#SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3_SA_2ions, pcov_3_SA_2ions = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[448, -42, 0.6, 8.1, 4e4, 4e4, 6e3, 1, 1.2, 0.5e-3], bounds=((0, -100,0, 0, 0,0,0,0,0, 0), (1000, 0, 2, 20,5e6, 5e6,5e4, 10, 10,10e-3)))
#popt_3_SA_2ions = [448, -42, 8e4, 6e3, 2, 0.5e-3]
popt_SA_vec_2ions.append(popt_3_SA_2ions)
pcov_SA_vec_2ions.append(pcov_3_SA_2ions)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA_2ions, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA_2ions, plot=True)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA_2ions)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
CPT con tres laseres pero lso dos IR son el mismo entonces las DD son mas finas
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211223_CPT_DosLaseres_v07_ChristmasSpecial\Data
ALL_FILES = """000016420-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
#UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
#No_measures.append(np.array(data['datasets']['no_measures']))
#%%
#Barriendo angulo del IR con tisa apagado
jvec = [0]
jselected = jvec
plt.figure()
i = 0
for j in jvec:
if j in jselected:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
#plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
#%%
from scipy.optimize import curve_fit
import time
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe = 0
titaprobe = 0.1
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
noiseamplitude = 0
selectedcurve=0
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_1ion(Freqs, offset, DetDoppler, DetRepump, SG, SP, SR, SCALE1, OFFSET, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
# BETA1 = 0
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
# U = 32.5e6
freqs = [2*f*1e-6-offset for f in Freqs]
#Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence1 = GenerateNoisyCPT_fit(SG, SR, SP, gPS, gPD, DetDoppler, DetRepump, U, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_1ion, FreqsDR, CountsDR, p0=[430, -25, 12, 0.9, 6.2, 3, 3e4, 2e3, 0.5e-3, 32e6], bounds=((0, -100, -20, 0, 0, 0, 0, 0, 0,20e6), (1000, 0, 50, 2, 20, 20, 5e6, 5e4, 15e-3,40e6)))
FittedEITpi_1_short, Detunings_1_short = FitEIT_MM_1ion(FreqsDR, *popt_1, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_1_long, Detunings_1_long = FitEIT_MM_1ion(freqslong, *popt_1, plot=True)
#%%
plt.figure()
plt.errorbar(Detunings_1_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='red', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_1_long, FittedEITpi_1_long, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.xlim(-20,0)
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
u = 32.5e6
B = (u/(2*np.pi))/c
correccion = 8 #con 8 fitea bien
offsetxpi = 440+1+correccion
DetDoppler = -5.0-correccion
FreqsDRpi_3 = [2*f*1e-6-offsetxpi+14 for f in Freqs_B[5]]
CountsDRpi_3 = Counts_B[5]
freqslongpi_3 = np.arange(min(FreqsDRpi_3), max(FreqsDRpi_3)+FreqsDRpi_3[1]-FreqsDRpi_3[0], 0.1*(FreqsDRpi_3[1]-FreqsDRpi_3[0]))
#[1.71811842e+04 3.34325038e-17]
def FitEITpi(freqs, SG, SP):
temp = 2e-3
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
FinalFluo = [f*6.554e4 + 1.863e3 for f in MeasuredFluo]
return FinalFluo
popt_tisaoff, pcov_tisaoff = curve_fit(FitEITpi, FreqsDRpi_3, CountsDRpi_3, p0=[0.5, 4.5], bounds=((0, 0), (2, 10)))
print(popt_tisaoff)
Sat_3 = popt_tisaoff[0]
Det_3 = popt_tisaoff[1]
FittedEITpi_3 = FitEITpi(freqslongpi_3, *popt_tisaoff)
plt.figure()
plt.errorbar(FreqsDRpi_3, CountsDRpi_3, yerr=2*np.sqrt(CountsDRpi_3), fmt='o', capsize=2, markersize=2)
plt.plot(freqslongpi_3, FittedEITpi_3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
FreqsCalibradas_B = FreqsDRpi_3
...@@ -14,7 +14,7 @@ Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A ...@@ -14,7 +14,7 @@ Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data #C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/') os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20231218_CPT_muri/Data')
CPT_FILES = """000016262-IR_Scan_withcal_optimized CPT_FILES = """000016262-IR_Scan_withcal_optimized
000016239-IR_Scan_withcal_optimized 000016239-IR_Scan_withcal_optimized
...@@ -111,7 +111,84 @@ plt.grid() ...@@ -111,7 +111,84 @@ plt.grid()
plt.legend() plt.legend()
#%%
from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels_MM
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 4
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 0, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 7e4, 5e4, 0.000001, 15e-3)))
FittedEITpi_1 = FitEIT_MM_single(freqslong, *popt_1)
beta1 = popt_1[4]
errorbeta1 = np.sqrt(pcov_1[4,4])
temp1 = popt_1[5]
errortemp1 = np.sqrt(pcov_1[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_1, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
...@@ -15,7 +15,7 @@ import numpy as np ...@@ -15,7 +15,7 @@ import numpy as np
import time import time
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.signal import argrelextrema from scipy.signal import argrelextrema
#from EITfit.MM_eightLevel_2repumps_python_scripts import CPTspectrum8levels_MM from EITfit.MM_eightLevel_2repumps_python_scripts import CPTspectrum8levels_MM
import random import random
from scipy.signal import savgol_filter as sf from scipy.signal import savgol_filter as sf
......
...@@ -233,7 +233,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3): ...@@ -233,7 +233,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
kboltzmann = 1.38e-23 #J/K kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio)) gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(mcalcio))
return gammaD return gammaD
...@@ -249,8 +249,14 @@ def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, l ...@@ -249,8 +249,14 @@ def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, l
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T) db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + db**2) kg = 1/397
lwp = np.sqrt(lwp**2 + db**2) kp = 1/866
fg = kg**2/(kg**2+kp**2)
fp = kp**2/(kg**2+kp**2)
lwg = np.sqrt(lwg**2 + (fg*db)**2)
lwp = np.sqrt(lwp**2 + (fp*db)**2)
CC = EffectiveL(gPS, gPD, lwg, lwp) CC = EffectiveL(gPS, gPD, lwg, lwp)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment