Commit 2055cac6 authored by Marcelo Luda's avatar Marcelo Luda

lolo2

parent 78bc9727
......@@ -1970,10 +1970,3 @@ for selectedcurve in SelectedCurveVec:
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
# import sys
# import re
# import ast
from scipy.optimize import curve_fit
# import os
# from scipy import interpolate
#%% Importaciones extra
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
globals()[var_name] = PARAMETROS[var_name]
print(f'loaded: {var_name}')
#%%
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
La 0 no ajusta bien incluso con todos los parametros libres
De la 1 a la 11 ajustan bien
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9,10,11]
#SelectedCurveVec = [10]
# if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 25e6), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3, 40e6)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
medfin = 12
voltages_dcA = Voltages[0][1:medfin]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec[:medfin-1],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[0:medfin-1],yerr=ErrorBetas_vec[:medfin-1],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec[:medfin-1]],yerr=[t*1e3 for t in ErrorTemp_vec[:medfin-1]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec[:10],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[:10],yerr=ErrorBetas_vec[:10],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
ftrap=22.1
gamma=21
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
"""
Temperatura vs beta con un ajuste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:10], [t*1e3 for t in Temp_vec[:10]],p0=(-10, -10, 1)) #esto ajusta muy bien
print(popt_rho22_raw)
betaslong = np.arange(0,2*2.7,0.01)
print(f'Min temp predicted: {InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw)[100]}')
plt.figure()
plt.errorbar(Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],xerr=ErrorBetas_vec[:10], yerr=[t*1e3 for t in ErrorTemp_vec[:10]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
#plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.plot(betaslong,InverseMicromotionSpectra(betaslong,*popt_rho22),label='Ajuste cuadratico')
plt.plot(betaslong,InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw),label='Ajuste cuadratico')
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
if False:
GUARDAR = {}
for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('PARAMETROS.npz', **GUARDAR )
......@@ -920,6 +920,9 @@ plt.grid()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
La 0 no ajusta bien incluso con todos los parametros libres
De la 1 a la 11 ajustan bien
"""
......@@ -963,8 +966,8 @@ alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
#SelectedCurveVec = [9]
SelectedCurveVec = [1,2,3,4,5,6,7,8,9,10,11]
#SelectedCurveVec = [10]
if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
......@@ -1152,9 +1155,42 @@ plt.grid()
#%%
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
ftrap=22.1
gamma=21
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
"""
Temperatura vs
"""
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
# import sys
# import re
# import ast
from scipy.optimize import curve_fit
# import os
# from scipy import interpolate
from numba import jit,njit
from time import time
#%% Importaciones extra
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
# PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
# for var_name in PARAMETROS.keys():
# globals()[var_name] = PARAMETROS[var_name]
# print(f'loaded: {var_name}')
#%%
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')
folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%% Definiciones de Numba
@jit
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
TEMP, alpha, phidoppler, titadoppler,
phiprobe, titaprobe, BETA1, drivefreq,
min(freqs), max(freqs)+(freqs[1]-freqs[0]),
freqs[1]-freqs[0], circularityprobe=CircPr,
plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
@jit
def FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
TEMP, alpha, phidoppler, titadoppler,
phiprobe, titaprobe, BETA1, drivefreq,
min(freqs), max(freqs)+(freqs[1]-freqs[0]),
freqs[1]-freqs[0], circularityprobe=CircPr,
plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1, Detunings
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
La 0 no ajusta bien incluso con todos los parametros libres
De la 1 a la 11 ajustan bien
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9,10,11]
#SelectedCurveVec = [10]
CircPr = 1
alpha = 0
t0 = time()
if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
print(f"{round(time()-t0,1):6.1f}: Procesando la curva {selectedcurve}")
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
if True:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single_plot(FreqsDR, *popt_3_SA)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single_plot(freqslong, *popt_3_SA)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
#%%
# tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec)
# for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve in zip(*tmp_datos):
# plt.figure()
# plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
# plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
# #plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# plt.xlabel('Detuning (MHz)')
# plt.ylabel('Counts')
# plt.legend(loc='upper left', fontsize=20)
# plt.grid()
# print(f'listo med {selectedcurve}')
# print(popt_3_SA)
fig, axx = plt.subplots( 3,4, figsize=(13,8) , constrained_layout=True, sharex=True , sharey=True )
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec,axx.flatten())
for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve,ax in zip(*tmp_datos):
ax.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.3, capsize=2, markersize=2)
ax.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='black', linewidth=2, label=f'med {selectedcurve}', alpha=0.7)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# ax.set_xlabel('Detuning (MHz)')
# ax.set_ylabel('Counts')
ax.legend(loc='upper left', fontsize=12)
ax.grid(True, ls=":")
print(f'listo med {selectedcurve}')
print(popt_3_SA)
for ax in axx[:,0]:
ax.set_ylabel('Counts')
for ax in axx[-1,:]:
ax.set_xlabel('Detuning (MHz)')
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
# plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
print(f'\n\nTE FALTA DEFINIR LA VARIABLE minimum_voltage\n\n')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
ftrap=22.1
gamma=21
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
"""
Temperatura vs beta con un ajuste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:10], [t*1e3 for t in Temp_vec[:10]],p0=(-10, -10, 1)) #esto ajusta muy bien
print(popt_rho22_raw)
betaslong = np.arange(0,2*2.7,0.01)
print(f'Min temp predicted: {InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw)[100]}')
plt.figure()
plt.errorbar(Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],xerr=ErrorBetas_vec[:10], yerr=[t*1e3 for t in ErrorTemp_vec[:10]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
#plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.plot(betaslong,InverseMicromotionSpectra(betaslong,*popt_rho22),label='Ajuste cuadratico')
plt.plot(betaslong,InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw),label='Ajuste cuadratico')
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
if False:
GUARDAR = {}
for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('PARAMETROS.npz', **GUARDAR )
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment