Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
artiq_experiments
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nicolas Nunez Barreto
artiq_experiments
Commits
405c667a
Commit
405c667a
authored
Jan 08, 2024
by
Marcelo Luda
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
intentos de ajuste de 3 iones
parent
9f5a811c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1164 additions
and
18 deletions
+1164
-18
lolo_CPT_plotter_20231123_multi.py
...123_CPTconmicromocion3/lolo_CPT_plotter_20231123_multi.py
+1111
-0
lolo_graficos_pub.py
...is/plots/20231123_CPTconmicromocion3/lolo_graficos_pub.py
+53
-18
No files found.
analisis/plots/20231123_CPTconmicromocion3/lolo_CPT_plotter_20231123_multi.py
0 → 100644
View file @
405c667a
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""
import
h5py
import
matplotlib.pyplot
as
plt
import
numpy
as
np
# import sys
# import re
# import ast
from
scipy.optimize
import
curve_fit
# import os
# from scipy import interpolate
#%% Funciones auxiliares
from
scipy.stats.distributions
import
t
,
chi2
def
estadistica
(
datos_x
,
datos_y
,
modelo
,
pcov
,
parametros
,
nombres
=
None
,
alpha
=
0.05
):
if
nombres
is
None
:
nombres
=
[
f
'{j}'
for
j
in
range
(
len
(
parametros
))
]
# Cantidad de parámetros
P
=
len
(
parametros
)
# Número de datos
N
=
len
(
datos_x
)
# Grados de libertas (Degrees Of Freedom)
dof
=
N
-
P
-
1
# Cauculamos coordenadas del modelo
# modelo_x = datos_x if modelo_x_arr is None else modelo_x_arr
# modelo_y = modelo( modelo_x, *parametros )
# Predicción del modelo para los datos_x medidos
prediccion_modelo
=
modelo
(
datos_x
,
*
parametros
)
# Calculos de cantidades estadísticas relevantes
COV
=
pcov
# Matriz de Covarianza
SE
=
np
.
sqrt
(
np
.
diag
(
COV
))
# Standar Error / Error estandar de los parámetros
residuos
=
datos_y
-
prediccion_modelo
# diferencia enrte el modelo y los datos
SSE
=
sum
((
residuos
)
**
2
)
# Resitual Sum of Squares
SST
=
sum
((
datos_y
-
np
.
mean
(
datos_y
))
**
2
)
# Total Sum of Squares
# http://en.wikipedia.org/wiki/Coefficient_of_determination
# Expresa el porcentaje de la varianza que logra explicar el modelos propuesto
Rsq
=
1
-
SSE
/
SST
# Coeficiente de determinación
Rsq_adj
=
1
-
(
1
-
Rsq
)
*
(
N
-
1
)
/
(
N
-
P
-
1
)
# Coeficiente de determinación Ajustado
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#In_least_squares_regression_analysis
# Expresa la correlación que hay entre los datos y la predicción del modelo
r_pearson
=
np
.
corrcoef
(
datos_y
,
prediccion_modelo
)[
0
,
1
]
# Reduced chi squared
# https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
chi2_
=
sum
(
residuos
**
2
)
/
N
chi2_red
=
sum
(
residuos
**
2
)
/
(
N
-
P
)
# Chi squared test
chi2_test
=
sum
(
residuos
**
2
/
abs
(
prediccion_modelo
)
)
# p-value del ajuste
p_val
=
chi2
(
dof
)
.
cdf
(
chi2_test
)
sT
=
t
.
ppf
(
1.0
-
alpha
/
2.0
,
N
-
P
)
# student T multiplier
CI
=
sT
*
SE
# Confidence Interval
print
(
'R-squared '
,
Rsq
)
print
(
'R-sq_adjusted'
,
Rsq_adj
)
print
(
'chi2 '
,
chi2_
)
print
(
'chi2_reduced '
,
chi2_red
)
print
(
'chi2_test '
,
chi2_test
)
print
(
'r-pearson '
,
r_pearson
)
print
(
'p-value '
,
p_val
)
print
(
''
)
print
(
'Error Estandard (SE):'
)
for
i
in
range
(
P
):
print
(
f
'parametro[{nombres[i]:>5s}]: '
,
parametros
[
i
],
' ± '
,
SE
[
i
])
print
(
''
)
print
(
'Intervalo de confianza al '
+
str
((
1
-
alpha
)
*
100
)
+
'
%
:'
)
for
i
in
range
(
P
):
print
(
f
'parametro[{nombres[i]:>5s}]: '
,
parametros
[
i
],
' ± '
,
CI
[
i
])
return
dict
(
R2
=
Rsq
,
R2_adj
=
Rsq_adj
,
chi2
=
chi2_
,
chi2_red
=
chi2_red
,
chi2_test
=
chi2_test
,
r
=
r_pearson
,
pvalue
=
p_val
,
SE
=
SE
,
CI
=
CI
)
#%% Importaciones extra
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from
Data.EITfit.lolo_modelo_full_8niveles
import
PerformExperiment_8levels_MM
PARAMETROS
=
np
.
load
(
'PARAMETROS.npz'
,
allow_pickle
=
True
)
for
var_name
in
PARAMETROS
.
keys
():
globals
()[
var_name
]
=
PARAMETROS
[
var_name
]
print
(
f
'loaded: {var_name}'
)
#%%
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')
folder
=
'../20231123_CPTconmicromocion3/Data/'
CPT_FILES
=
f
"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def
SeeKeys
(
files
):
for
i
,
fname
in
enumerate
(
files
.
split
()):
data
=
h5py
.
File
(
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
print
(
fname
)
print
(
list
(
data
[
'datasets'
]
.
keys
()))
print
(
SeeKeys
(
CPT_FILES
))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts
=
[]
Freqs
=
[]
AmpTisa
=
[]
UVCPTAmp
=
[]
No_measures
=
[]
Voltages
=
[]
for
i
,
fname
in
enumerate
(
CPT_FILES
.
split
()):
print
(
str
(
i
)
+
' - '
+
fname
)
#print(fname)
data
=
h5py
.
File
(
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs
.
append
(
np
.
array
(
data
[
'datasets'
][
'IR1_Frequencies'
]))
Counts
.
append
(
np
.
array
(
data
[
'datasets'
][
'data_array'
]))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp
.
append
(
np
.
array
(
data
[
'datasets'
][
'UV_CPT_amp'
]))
No_measures
.
append
(
np
.
array
(
data
[
'datasets'
][
'no_measures'
]))
Voltages
.
append
(
np
.
array
(
data
[
'datasets'
][
'scanning_voltages'
]))
def
Split
(
array
,
n
):
length
=
len
(
array
)
/
n
splitlist
=
[]
jj
=
0
while
jj
<
length
:
partial
=
[]
ii
=
0
while
ii
<
n
:
partial
.
append
(
array
[
jj
*
n
+
ii
])
ii
=
ii
+
1
splitlist
.
append
(
partial
)
jj
=
jj
+
1
return
splitlist
CountsSplit
=
[]
CountsSplit
.
append
(
Split
(
Counts
[
0
],
len
(
Freqs
[
0
])))
CountsSplit_2ions
=
[]
CountsSplit_2ions
.
append
(
Split
(
Counts
[
4
],
len
(
Freqs
[
4
])))
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
jvec
=
[
2
]
# de la 1 a la 9 vale la pena, despues no
drs
=
[
390.5
,
399.5
,
406
,
413.5
]
drive
=
22.1
Frequencies
=
Freqs
[
0
]
plt
.
figure
()
i
=
0
for
j
in
jvec
:
plt
.
errorbar
([
2
*
f
*
1e-6
for
f
in
Frequencies
],
CountsSplit
[
0
][
j
],
yerr
=
np
.
sqrt
(
CountsSplit
[
0
][
j
]),
fmt
=
'o'
,
capsize
=
2
,
markersize
=
2
)
i
=
i
+
1
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'counts'
)
plt
.
grid
()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt
.
legend
()
#%%
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from
scipy.optimize
import
curve_fit
import
time
#%%
"""
AHORA VAMOS A MEDICIONES CON MAS DE UN ION!!!
Las mediciones estan buenas, habria que ver de ajustarlas bien, yo no lo logre.
"""
"""
Ploteo la cpt de referencia / plotting the reference CPT
1: 2 iones, -100 mV dcA
2: 2 iones, -150 mV dcA
3: 2 iones, -50 mV dcA
4: 2 iones, 5 voltajes (el ion se va en la 4ta medicion y en la 5ta ni esta)
5, 6 y 7: 3 iones en donde el scaneo esta centrado en distintos puntos
"""
jvec
=
[
3
]
# desde la 1, pero la 4 no porque es un merge de curvitas
plt
.
figure
()
i
=
0
for
j
in
jvec
:
plt
.
errorbar
([
2
*
f
*
1e-6
for
f
in
Freqs
[
j
]],
Counts
[
j
],
yerr
=
np
.
sqrt
(
Counts
[
j
]),
fmt
=
'o'
,
capsize
=
2
,
markersize
=
2
)
i
=
i
+
1
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'counts'
)
plt
.
grid
()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt
.
legend
()
#%%
"""
Mergeo la 5, 6 y 7
"""
Freqs5
=
[
2
*
f
*
1e-6
for
f
in
Freqs
[
5
]]
Freqs6
=
[
2
*
f
*
1e-6
for
f
in
Freqs
[
6
]]
Freqs7
=
[
2
*
f
*
1e-6
for
f
in
Freqs
[
7
]]
Counts5
=
Counts
[
5
]
Counts6
=
Counts
[
6
]
Counts7
=
Counts
[
7
]
i_1_ini
=
0
i_1
=
36
i_2_ini
=
0
i_2
=
24
f_1
=
18
f_2
=
30
scale_1
=
0.92
scale_2
=
0.98
#Merged_freqs_test = [f-f_2 for f in Freqs6[i_2_ini:i_2]]+[f-f_1 for f in Freqs5[i_1_ini:i_1]]+Freqs7
#plt.plot(Merged_freqs_test,'o')
Merged_freqs
=
[
f
-
f_2
for
f
in
Freqs6
[
0
:
i_2
]]
+
[
f
-
f_1
for
f
in
Freqs5
[
0
:
i_1
]]
+
Freqs7
Merged_counts
=
[
scale_2
*
c
for
c
in
Counts6
[
0
:
i_2
]]
+
[
scale_1
*
c
for
c
in
Counts5
[
0
:
i_1
]]
+
list
(
Counts7
)
Merged_freqs_rescaled
=
np
.
linspace
(
np
.
min
(
Merged_freqs
),
np
.
max
(
Merged_freqs
),
len
(
Merged_freqs
))
#drs = [391.5, 399.5, 405.5, 414]
drs
=
[
370
,
379
,
385
,
391.5
]
plt
.
figure
()
i
=
0
for
j
in
jvec
:
plt
.
plot
([
f
-
f_1
for
f
in
Freqs5
[
0
:
i_1
]],
[
scale_1
*
c
for
c
in
Counts5
[
0
:
i_1
]],
'o'
)
plt
.
plot
([
f
-
f_2
for
f
in
Freqs6
[
0
:
i_2
]],
[
scale_2
*
c
for
c
in
Counts6
[
0
:
i_2
]],
'o'
)
plt
.
plot
(
Freqs7
,
Counts7
,
'o'
)
plt
.
errorbar
(
Merged_freqs
,
Merged_counts
,
yerr
=
np
.
sqrt
(
Merged_counts
),
fmt
=
'o'
,
capsize
=
2
,
markersize
=
2
)
i
=
i
+
1
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'counts'
)
plt
.
grid
()
for
dr
in
drs
:
plt
.
axvline
(
dr
)
plt
.
axvline
(
dr
+
drive
,
color
=
'red'
,
linestyle
=
'dashed'
,
alpha
=
0.3
)
plt
.
axvline
(
dr
-
drive
,
color
=
'red'
,
linestyle
=
'dashed'
,
alpha
=
0.3
)
plt
.
legend
()
#%%
"""
ajusto la mergeada de 3 iones
"""
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
0
phiprobe
=
0
titaprobe
=
90
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
correccion
=
-
20
offsetxpi
=
438
+
correccion
DetDoppler
=
-
35
-
correccion
-
22
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
FreqsDR
=
[
f
-
offsetxpi
for
f
in
Merged_freqs
]
CountsDR
=
Merged_counts
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
import
numba
@
numba
.
jit
def
FitEIT_MM1
(
freqs
,
SG
,
SP
,
SCALE1
,
OFFSET
,
BETA1
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP
=
0.1e-3
#BETA1, BETA2, BETA3 = 0, 0, 2
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
for
f
in
Fluorescence1
])
return
ScaledFluo1
+
OFFSET
#return ScaledFluo1
@
numba
.
jit
def
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
SCALE3
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP
=
0.1e-3
freqs
=
np
.
array
(
freqs
)
#BETA1, BETA2, BETA3 = 0, 0, 2
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence2
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA2
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence3
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA3
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
# ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])
# ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
# ScaledFluo3 = np.array([f*SCALE3 for f in Fluorescence3])
# return ScaledFluo1+ScaledFluo2+ScaledFluo3+OFFSET
Fluorescence1
=
np
.
array
(
Fluorescence1
)
Fluorescence2
=
np
.
array
(
Fluorescence2
)
Fluorescence3
=
np
.
array
(
Fluorescence3
)
return
SCALE1
*
Fluorescence1
+
SCALE2
*
Fluorescence2
+
SCALE3
*
Fluorescence3
+
OFFSET
if
not
'popt_1ions'
in
globals
()
.
keys
():
t0
=
time
.
time
()
print
(
"Arranamos FIT 1"
)
par_ini
=
[
0.65
,
7.06
,
86070
,
3917
,
1.64
]
popt_1ions
,
pcov_1ions
=
curve_fit
(
FitEIT_MM1
,
FreqsDR
,
CountsDR
,
p0
=
par_ini
,
bounds
=
((
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
5e8
,
7e3
,
10
)))
pp1
=
estadistica
(
FreqsDR
,
CountsDR
,
FitEIT_MM1
,
pcov_1ions
,
popt_1ions
,
nombres
=
None
,
alpha
=
0.05
)
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
if
not
'popt_3ions'
in
globals
()
.
keys
():
t0
=
time
.
time
()
print
(
"Arranamos FIT 1"
)
par_ini
=
[
0.65
,
7.06
,
86070
,
3917
,
1.64
]
popt_1ions
,
pcov_1ions
=
curve_fit
(
FitEIT_MM1
,
FreqsDR
,
CountsDR
,
p0
=
par_ini
,
bounds
=
((
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
5e8
,
7e3
,
10
)))
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
print
(
"Arranamos FIT 3"
)
def
fun
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
):
SCALE3
=
max
(
1
-
SCALE2
-
SCALE1
-
OFFSET
,
0
)
Fluorescence3
=
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
SCALE3
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
return
Fluorescence3
/
sum
(
Fluorescence3
)
par_ini
=
popt_1ions
.
tolist
()[:
2
]
+
[
1
/
3
]
*
2
+
[
0.1
]
+
popt_1ions
.
tolist
()[
-
1
:]
*
3
bounds
=
((
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
1
,
1
,
1
,
10
,
10
,
10
))
popt_3ions
,
pcov_3ions
=
curve_fit
(
fun
,
FreqsDR
,
CountsDR
,
p0
=
par_ini
,
bounds
=
bounds
)
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
freqs
=
np
.
array
(
FreqsDR
)
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
=
popt_3ions
SCALE3
=
max
(
1
-
SCALE2
-
SCALE1
-
OFFSET
,
0
)
# Fluorescence= FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
Fluorescence
=
fun
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
plt
.
figure
()
plt
.
errorbar
(
freqs
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
freqs
,
Fluorescence
*
sum
(
CountsDR
))
plt
.
plot
(
freqs
,
fun
(
freqs
,
*
par_ini
)
*
sum
(
CountsDR
))
#%% Acá hay un ajuste del de 3 iones que da razonable
FreqsDR
,
CountsDR
=
np
.
array
(
FreqsDR
)
,
np
.
array
(
CountsDR
)
t0
=
time
.
time
()
print
(
"Arranamos FIT 1"
)
par_ini
=
[
0.65
,
7.06
,
86070
,
3917
,
1.64
]
popt_1ions
,
pcov_1ions
=
curve_fit
(
FitEIT_MM1
,
FreqsDR
,
CountsDR
,
p0
=
par_ini
,
bounds
=
((
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
5e8
,
7e3
,
10
)))
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
par_ini
=
popt_1ions
.
tolist
()[:
2
]
+
[
1
/
3
]
*
2
+
[
0.1
]
+
popt_1ions
.
tolist
()[
-
1
:]
*
3
bounds
=
((
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
1
,
1
,
1
,
10
,
10
,
10
))
# bounds = (-np.inf, np.inf)
plt
.
figure
()
plt
.
errorbar
(
freqs
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
l1
,
=
plt
.
plot
(
freqs
,
fun
(
freqs
,
*
par_ini
)
*
sum
(
CountsDR
))
plt
.
draw
()
print
(
"Arranamos FIT 3"
)
def
fun
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
):
SCALE3
=
max
(
1
-
SCALE2
-
SCALE1
-
OFFSET
,
0
)
Fluorescence3
=
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
SCALE3
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
l1
.
set_ydata
(
Fluorescence3
/
sum
(
Fluorescence3
)
*
sum
(
CountsDR
))
print
(
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
plt
.
pause
(
0.1
)
return
Fluorescence3
/
sum
(
Fluorescence3
)
popt_3ions
,
pcov_3ions
=
curve_fit
(
fun
,
FreqsDR
,
CountsDR
/
CountsDR
.
sum
(),
p0
=
par_ini
,
bounds
=
bounds
)
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
freqs
=
np
.
array
(
FreqsDR
)
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
=
popt_3ions
SCALE3
=
max
(
1
-
SCALE2
-
SCALE1
-
OFFSET
,
0
)
# Fluorescence= FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3)
Fluorescence
=
fun
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
plt
.
plot
(
freqs
,
Fluorescence
*
sum
(
CountsDR
))
if
False
:
popt_3ions
=
np
.
array
([
0.70790618
,
7.41165226
,
0.1707309
,
0.13974759
,
0.02322333
,
3.69298275
,
3.68847693
,
1.36216489
])
#%%
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
if
False
:
# Ejemplo 3 iones
t0
=
time
.
time
()
freqs
,
SG
,
SP
=
np
.
array
(
FreqsDR
),
0.65
,
7.06
SCALE1
,
SCALE2
,
SCALE3
,
OFFSET
=
1
,
1
,
1
,
1
BETA1
,
BETA2
,
BETA3
=
1.64
,
2
,
3
TEMP
=
0.1e-3
Fluorescence3
=
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
SCALE3
,
OFFSET
,
BETA1
,
BETA2
,
BETA3
)
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
Detunings
,
Fluorescence
=
np
.
array
(
freqs
),
np
.
array
(
Fluorescence3
)
plt
.
figure
()
plt
.
errorbar
(
FreqsDR
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
Detunings
,
Fluorescence
*
sum
(
CountsDR
)
/
sum
(
Fluorescence
))
if
False
:
# Ejemplo 1 ion
t0
=
time
.
time
()
freqs
,
SG
,
SP
,
BETA1
=
FreqsDR
,
0.65
,
7.06
,
1.64
TEMP
=
0.1e-3
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
print
(
f
"time: {round(time.time()-t0,1)} seg"
)
Detunings
,
Fluorescence1
=
np
.
array
(
Detunings
),
np
.
array
(
Fluorescence1
)
plt
.
figure
()
plt
.
errorbar
(
FreqsDR
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
Detunings
,
Fluorescence1
*
sum
(
CountsDR
)
/
sum
(
Fluorescence1
))
FittedEITpi_3ions
=
FitEIT_MM
(
freqslong
,
*
popt_3ions
)
#FittedEITpi_3ions = FitEIT_MM(freqslong, popt_3ions[0],popt_3ions[1],popt_3ions[2],popt_3ions[3],popt_3ions[4],popt_3ions[5],4,2,0)
#FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
print
(
popt_3ions
)
plt
.
figure
()
plt
.
errorbar
(
FreqsDR
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
freqslong
,
FittedEITpi_3ions
,
color
=
'darkgreen'
,
linewidth
=
3
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
plt
.
title
(
f
'Corr:{correccion},DetD:{DetDoppler}'
)
plt
.
grid
()
#%%
"""
Veo la medicion de varios voltajes uno atras de otro
Se va en medio de la medicion 4, y en la 5 ni esta
"""
jvec
=
[
2
]
# desde la 1, pero la 4 no porque es un merge de curvitas
Freqs
plt
.
figure
()
i
=
0
for
j
in
jvec
:
plt
.
errorbar
([
2
*
f
*
1e-6
for
f
in
Freqs
[
4
]],
CountsSplit_2ions
[
0
][
j
],
yerr
=
np
.
sqrt
(
CountsSplit_2ions
[
0
][
j
]),
fmt
=
'o'
,
capsize
=
2
,
markersize
=
2
)
i
=
i
+
1
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'counts'
)
plt
.
grid
()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt
.
legend
()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from
scipy.optimize
import
curve_fit
import
time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
0
phiprobe
=
0
titaprobe
=
90
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
correccion
=
27
offsetxpi
=
421
+
correccion
DetDoppler
=
-
16
-
correccion
+
5
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
FreqsDR
=
[
2
*
f
*
1e-6
-
offsetxpi
for
f
in
Freqs
[
1
]]
CountsDR
=
Counts
[
1
]
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
def
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP
=
0.1e-3
BETA1
,
BETA2
=
3
,
0
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence2
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA2
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
ScaledFluo2
=
np
.
array
([
f
*
SCALE2
+
OFFSET
for
f
in
Fluorescence2
])
return
ScaledFluo1
+
ScaledFluo2
#return ScaledFluo1
if
not
'popt_2ions_1'
in
globals
()
.
keys
():
popt_2ions_1
,
pcov_2ions_1
=
curve_fit
(
FitEIT_MM
,
FreqsDR
,
CountsDR
,
p0
=
[
0.9
,
6.2
,
3.5e3
,
2.9e3
,
3e3
],
bounds
=
((
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
5e8
,
5e8
,
8e3
)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp
=
FitEIT_MM
(
freqslong
,
*
popt_2ions_1
)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1
=
FitEIT_MM
(
freqslong
,
*
popt_2ions_1
)
print
(
popt_2ions_1
)
plt
.
figure
()
plt
.
errorbar
(
FreqsDR
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
freqslong
,
FittedEITpi_2ions_1
,
color
=
'darkgreen'
,
linewidth
=
3
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
plt
.
title
(
f
'Corr:{correccion},DetD:{DetDoppler}'
)
plt
.
grid
()
#%%
"""
SUPER AJUSTE PARA MED DE 2 IONES
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from
scipy.optimize
import
curve_fit
import
time
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
0
phiprobe
=
0
titaprobe
=
90
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
correccion
=
13
#DetDoppler = -11.5-correccion
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
SelectedCurveVec
=
[
3
]
if
not
'popt_SA_vec_2ions'
in
globals
()
.
keys
():
popt_SA_vec_2ions
=
[]
pcov_SA_vec_2ions
=
[]
for
selectedcurve
in
SelectedCurveVec
:
FreqsDR
=
Freqs
[
selectedcurve
]
CountsDR
=
Counts
[
selectedcurve
]
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
def
FitEIT_MM_single
(
Freqs
,
offset
,
DetDoppler
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
,
TEMP
,
plot
=
False
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
#SG = 0.6
#SP = 8.1
# TEMP = 0.2e-3
freqs
=
[
2
*
f
*
1e-6
-
offset
for
f
in
Freqs
]
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence2
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA2
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
ScaledFluo2
=
np
.
array
([
f
*
SCALE2
for
f
in
Fluorescence2
])
if
plot
:
return
ScaledFluo1
+
ScaledFluo2
,
Detunings
else
:
return
ScaledFluo1
+
ScaledFluo2
#return ScaledFluo1
if
True
:
popt_3_SA_2ions
,
pcov_3_SA_2ions
=
curve_fit
(
FitEIT_MM_single
,
FreqsDR
,
CountsDR
,
p0
=
[
448
,
-
42
,
0.6
,
8.1
,
4e4
,
4e4
,
6e3
,
1
,
1.2
,
0.5e-3
],
bounds
=
((
0
,
-
100
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
),
(
1000
,
0
,
2
,
20
,
5e6
,
5e6
,
5e4
,
10
,
10
,
10e-3
)))
#popt_3_SA_2ions = [448, -42, 8e4, 6e3, 2, 0.5e-3]
popt_SA_vec_2ions
.
append
(
popt_3_SA_2ions
)
pcov_SA_vec_2ions
.
append
(
pcov_3_SA_2ions
)
FittedEITpi_3_SA_short
,
Detunings_3_SA_short
=
FitEIT_MM_single
(
FreqsDR
,
*
popt_3_SA_2ions
,
plot
=
True
)
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
FittedEITpi_3_SA_long
,
Detunings_3_SA_long
=
FitEIT_MM_single
(
freqslong
,
*
popt_3_SA_2ions
,
plot
=
True
)
raise
ValueError
(
'Acá tenes que levantar de nuevo los valores que van'
)
plt
.
figure
()
plt
.
errorbar
(
Detunings_3_SA_short
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
Detunings_3_SA_long
,
FittedEITpi_3_SA_long
,
color
=
'darkolivegreen'
,
linewidth
=
3
,
label
=
f
'med {selectedcurve}'
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
plt
.
legend
(
loc
=
'upper left'
,
fontsize
=
20
)
plt
.
grid
()
print
(
f
'listo med {selectedcurve}'
)
print
(
popt_3_SA_2ions
)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from
scipy.optimize
import
curve_fit
import
time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
0
phiprobe
=
0
titaprobe
=
90
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
correccion
=
27
offsetxpi
=
421
+
correccion
DetDoppler
=
-
16
-
correccion
+
5
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
FreqsDR
=
[
2
*
f
*
1e-6
-
offsetxpi
for
f
in
Freqs
[
1
]]
CountsDR
=
Counts
[
1
]
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
def
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP
=
0.1e-3
BETA1
,
BETA2
=
3
,
0
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence2
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA2
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
ScaledFluo2
=
np
.
array
([
f
*
SCALE2
+
OFFSET
for
f
in
Fluorescence2
])
return
ScaledFluo1
+
ScaledFluo2
#return ScaledFluo1
if
not
'popt_2ions_1'
in
globals
()
.
keys
():
popt_2ions_1
,
pcov_2ions_1
=
curve_fit
(
FitEIT_MM
,
FreqsDR
,
CountsDR
,
p0
=
[
0.9
,
6.2
,
3.5e3
,
2.9e3
,
3e3
],
bounds
=
((
0
,
0
,
0
,
0
,
0
),
(
2
,
20
,
5e8
,
5e8
,
8e3
)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp
=
FitEIT_MM
(
freqslong
,
*
popt_2ions_1
)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1
=
FitEIT_MM
(
freqslong
,
*
popt_2ions_1
)
print
(
popt_2ions_1
)
plt
.
figure
()
plt
.
errorbar
(
FreqsDR
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
freqslong
,
FittedEITpi_2ions_1
,
color
=
'darkgreen'
,
linewidth
=
3
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
plt
.
title
(
f
'Corr:{correccion},DetD:{DetDoppler}'
)
plt
.
grid
()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""
#%%
"""
SUPER AJUSTE (SA)
"""
if
False
:
GUARDAR
=
{}
for
var
in
[
kk
for
kk
in
globals
()
.
keys
()
if
kk
.
startswith
(
'pop'
)
]:
print
(
var
)
GUARDAR
[
var
]
=
globals
()[
var
]
print
(
''
)
for
var
in
[
kk
for
kk
in
globals
()
.
keys
()
if
kk
.
startswith
(
'pcov'
)
]:
print
(
var
)
GUARDAR
[
var
]
=
globals
()[
var
]
print
(
''
)
for
var
in
[
kk
for
kk
in
globals
()
.
keys
()
if
kk
.
startswith
(
'Fitted'
)
]:
print
(
var
)
GUARDAR
[
var
]
=
globals
()[
var
]
print
(
''
)
for
var
in
[
kk
for
kk
in
globals
()
.
keys
()
if
kk
.
endswith
(
'_vec'
)
]:
print
(
var
)
GUARDAR
[
var
]
=
globals
()[
var
]
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
0
phiprobe
=
0
titaprobe
=
90
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
correccion
=
13
#DetDoppler = -11.5-correccion
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
#SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
SelectedCurveVec
=
[
0
]
# popt_SA_vec = []
# pcov_SA_vec = []
# Detuningsshort_vec = []
# Counts_vec = []
# Detuningslong_vec = []
# FittedCounts_vec = []
# Betas_vec = []
# ErrorBetas_vec = []
# Temp_vec = []
# ErrorTemp_vec = []
# DetuningsUV_vec = []
# ErrorDetuningsUV_vec = []
for
selectedcurve
in
SelectedCurveVec
:
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR
=
Freqs
[
0
]
CountsDR
=
CountsSplit
[
0
][
selectedcurve
]
if
selectedcurve
==
1
:
CountsDR
[
100
]
=
0.5
*
(
CountsDR
[
99
]
+
CountsDR
[
101
])
CountsDR
[
105
]
=
0.5
*
(
CountsDR
[
104
]
+
CountsDR
[
106
])
if
selectedcurve
==
2
:
CountsDR
[
67
]
=
0.5
*
(
CountsDR
[
66
]
+
CountsDR
[
68
])
CountsDR
[
71
]
=
0.5
*
(
CountsDR
[
70
]
+
CountsDR
[
72
])
if
selectedcurve
==
6
:
CountsDR
[
1
]
=
0.5
*
(
CountsDR
[
0
]
+
CountsDR
[
2
])
CountsDR
[
76
]
=
0.5
*
(
CountsDR
[
75
]
+
CountsDR
[
77
])
if
selectedcurve
==
7
:
CountsDR
[
117
]
=
0.5
*
(
CountsDR
[
116
]
+
CountsDR
[
118
])
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
def
FitEIT_MM_single
(
Freqs
,
offset
,
DetDoppler
,
SG
,
SP
,
SCALE1
,
OFFSET
,
BETA1
,
TEMP
,
U
,
plot
=
False
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs
=
[
2
*
f
*
1e-6
-
offset
for
f
in
Freqs
]
Detunings
,
Fluorescence1
=
PerformExperiment_8levels_MM
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
U
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
if
plot
:
return
ScaledFluo1
,
Detunings
else
:
return
ScaledFluo1
#return ScaledFluo1
do_fit
=
True
if
do_fit
:
popt_3_SA
,
pcov_3_SA
=
curve_fit
(
FitEIT_MM_single
,
FreqsDR
,
CountsDR
,
p0
=
[
430
,
-
25
,
0.9
,
6.2
,
3e4
,
1.34e3
,
2
,
(
np
.
pi
**
2
)
*
1e-3
,
32e6
],
bounds
=
((
0
,
-
50
,
0
,
0
,
0
,
0
,
0
,
0
,
25e6
),
(
1000
,
0
,
2
,
20
,
5e4
,
5e4
,
10
,
(
np
.
pi
**
2
)
*
10e-3
,
40e6
)))
# popt_SA_vec.append(popt_3_SA)
# pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short
,
Detunings_3_SA_short
=
FitEIT_MM_single
(
FreqsDR
,
*
popt_3_SA
,
plot
=
True
)
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
FittedEITpi_3_SA_long
,
Detunings_3_SA_long
=
FitEIT_MM_single
(
freqslong
,
*
popt_3_SA
,
plot
=
True
)
# DetuningsUV_vec.append(popt_3_SA[1])
# ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
# Betas_vec.append(popt_3_SA[6])
# ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
# Temp_vec.append(popt_3_SA[7])
# ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
# Detuningsshort_vec.append(Detunings_3_SA_short)
# Counts_vec.append(CountsDR)
# Detuningslong_vec.append(Detunings_3_SA_long)
# FittedCounts_vec.append(FittedEITpi_3_SA_long)
plt
.
figure
()
plt
.
errorbar
(
Detunings_3_SA_short
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
Detunings_3_SA_long
,
FittedEITpi_3_SA_long
,
color
=
'darkolivegreen'
,
linewidth
=
3
,
label
=
f
'med {selectedcurve}'
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
plt
.
legend
(
loc
=
'upper left'
,
fontsize
=
20
)
plt
.
grid
()
print
(
f
'listo med {selectedcurve}'
)
print
(
popt_3_SA
)
analisis/plots/20231123_CPTconmicromocion3/lolo_graficos_pub.py
View file @
405c667a
...
...
@@ -300,6 +300,9 @@ alpha = 0
voltages_dcA
=
Voltages
[
0
][
SelectedCurveVec
]
def
hiperbola
(
x
,
a
,
y0
,
b
,
x0
):
...
...
@@ -441,14 +444,14 @@ x_hip = np.linspace(-0.23,0.005,200)
ax
=
ax_central
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
],
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
4
,
markersize
=
3
,
color
=
'C3'
,
label
=
r'fitted $\beta$'
)
ax
.
plot
(
x_hip
,
hiperbola
(
x
hip
,
*
popthip
),
color
=
'C0'
,
label
=
r'hyperbola model'
)
ax
.
plot
(
x_hip
,
hiperbola
(
x
_hip
,
*
param
),
color
=
'C0'
,
label
=
r'hyperbola model'
)
ax
.
set_ylabel
(
r'Modulation factor $\beta$'
,
labelpad
=-
5
)
ax
.
set_ylim
(
-
0.05
,
3
)
ax
.
set_xlim
(
-
0.22
,
0
)
ax
.
set_title
(
f
'(g)'
,
x
=
0.95
,
y
=
0.006
,
color
=
'gray'
)
ax
=
ax_res
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
]
-
hiperbola
(
voltages_dcA
[
I
],
*
p
opthip
),
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
]
-
hiperbola
(
voltages_dcA
[
I
],
*
p
aram
),
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
4
,
markersize
=
3
,
color
=
'C3'
)
ax
.
axhline
(
0
,
color
=
'C0'
)
ax
.
set_ylabel
(
'Res.'
,
labelpad
=-
5
)
...
...
@@ -479,9 +482,9 @@ for jj,ax in zip(selection,axes_vec):
# Leyenda ##############################
h1
,
l1
=
ax_central
.
get_legend_handles_labels
()
h2
,
l2
=
axx
[
0
,
0
]
.
get_legend_handles_labels
()
ax_central
.
legend
(
h1
+
h2
,
l1
+
l2
,
loc
=
'upper left'
)
#
h1, l1 = ax_central.get_legend_handles_labels()
#
h2, l2 = axx[0,0].get_legend_handles_labels()
#
ax_central.legend(h1+h2, l1+l2, loc='upper left')
...
...
@@ -495,7 +498,7 @@ fig.savefig('grafico_central_opcion_A.pdf')
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Gráfico central OPCION
A
#%% Gráfico central OPCION
B
import
matplotlib.pyplot
as
plt
plt
.
rcParams
.
update
({
'font.size'
:
8
})
...
...
@@ -533,7 +536,7 @@ gs2 = gridspec.GridSpec(4,3, width_ratios=width_ratios,left=0.16,right=0.9,botto
ax_central
=
fig
.
add_subplot
(
gs2
[
1
:
-
1
,
1
])
ax_dib
=
fig
.
add_subplot
(
gs2
[
0
,
1
])
ax_dib
=
fig
.
add_subplot
(
gs2
[
0
,
1
]
,
sharex
=
ax_res
)
ax_dib
.
spines
[:]
.
set_visible
(
False
)
ax_dib
.
xaxis
.
set_tick_params
(
labelbottom
=
False
)
ax_dib
.
yaxis
.
set_tick_params
(
labelleft
=
False
)
...
...
@@ -560,12 +563,29 @@ tmp_datos=(Detuningsshort_vec[selection,:],
np
.
array
(
selection
)
+
1
,
axes_vec
,
'abcfed'
)
from
scipy.signal
import
savgol_filter
as
savgol
for
Detunings_3_SA_short
,
CountsDR
,
Detunings_3_SA_long
,
FittedEITpi_3_SA_long
,
selectedcurve
,
ax
,
le
in
zip
(
*
tmp_datos
):
ax
.
errorbar
(
Detunings_3_SA_short
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'darkgreen'
,
alpha
=
0.2
,
capsize
=
2
,
markersize
=
2
,
label
=
'measured data'
)
# ax.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR),
# fmt='o', color='darkgreen', alpha=0.2, capsize=2,
# markersize=2, label='measured data')
yerr_max
=
CountsDR
+
2
*
np
.
sqrt
(
CountsDR
)
yerr_min
=
CountsDR
-
2
*
np
.
sqrt
(
CountsDR
)
yerr_max
=
savgol
(
yerr_max
,
3
,
2
)
yerr_min
=
savgol
(
yerr_min
,
3
,
2
)
ax
.
fill_between
(
Detunings_3_SA_short
,
yerr_max
,
yerr_min
,
color
=
'darkgreen'
,
alpha
=
0.2
)
ax
.
plot
(
Detunings_3_SA_short
,
CountsDR
,
'.'
,
ms
=
2
,
color
=
'darkgreen'
,
alpha
=
0.9
)
ax
.
plot
(
Detunings_3_SA_long
,
FittedEITpi_3_SA_long
,
color
=
'black'
,
linewidth
=
2
,
label
=
f
'micromotion model'
,
alpha
=
0.7
)
color
=
'black'
,
linewidth
=
1
,
label
=
f
'micromotion model'
,
alpha
=
0.7
)
ax
.
grid
(
True
,
ls
=
":"
,
color
=
'lightgray'
)
...
...
@@ -597,14 +617,14 @@ x_hip = np.linspace(-0.23,0.005,200)
ax
=
ax_central
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
],
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
4
,
markersize
=
3
,
color
=
'C3'
,
label
=
r'fitted $\beta$'
)
ax
.
plot
(
x_hip
,
hiperbola
(
x
hip
,
*
popthip
),
color
=
'C0'
,
label
=
r'hyperbola model'
)
ax
.
plot
(
x_hip
,
hiperbola
(
x
_hip
,
*
param
),
color
=
'C0'
,
label
=
r'hyperbola model'
)
ax
.
set_ylabel
(
r'Modulation factor $\beta$'
,
labelpad
=-
5
)
ax
.
set_ylim
(
-
0.05
,
3
)
ax
.
set_xlim
(
-
0.22
,
0
)
ax
.
set_title
(
f
'(g)'
,
x
=
0.95
,
y
=
0.006
,
color
=
'gray'
)
ax
=
ax_res
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
]
-
hiperbola
(
voltages_dcA
[
I
],
*
p
opthip
),
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
]
-
hiperbola
(
voltages_dcA
[
I
],
*
p
aram
),
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
4
,
markersize
=
3
,
color
=
'C3'
)
ax
.
axhline
(
0
,
color
=
'C0'
)
ax
.
set_ylabel
(
'Res.'
,
labelpad
=-
5
)
...
...
@@ -638,14 +658,29 @@ for jj,ax in zip(selection,axes_vec):
a
,
y0
,
b
,
x0
=
param
ax_dib
.
plot
(
x_hip
,
x_hip
*
0
+
y0
,
color
=
'gray)
ax_dib.set_ylim(0,y0*1.1'
)
ax_dib
.
plot
(
x_hip
,
x_hip
*
0
+
y0
,
color
=
'gray'
)
ax_dib
.
set_ylim
(
-
y0
*
0.1
,
y0
*
1.2
)
ax_dib
.
plot
(
[
x0
],
[
0
],
'x'
)
ax_dib
.
text
(
x0
+
0.01
,
0
,
'trap center'
,
fontsize
=
8
,
ha
=
'left'
,
va
=
'center'
,
color
=
'C0'
)
ax_dib
.
plot
(
voltages_dcA
[
I
],
voltages_dcA
[
I
]
*
0
+
y0
,
'.'
)
for
Vx
in
voltages_dcA
[
I
]:
ax_dib
.
plot
(
[
Vx
,
x0
],
[
y0
,
0
],
':'
,
color
=
'lightgray'
,
lw
=
1
)
import
matplotlib.patches
as
mpatches
arr
=
mpatches
.
FancyArrowPatch
((
x0
,
y0
*
1.1
),
(
x0
/
2
,
y0
*
1.1
),
arrowstyle
=
'->,head_width=.15'
,
mutation_scale
=
10
,
color
=
'C1'
)
ax_dib
.
add_patch
(
arr
)
ax_dib
.
annotate
(
"ion position"
,
(
.5
,
.5
),
xycoords
=
arr
,
ha
=
'center'
,
va
=
'bottom'
,
color
=
'C1'
)
# Leyenda ##############################
h1
,
l1
=
ax_central
.
get_legend_handles_labels
()
h2
,
l2
=
axx
[
0
,
0
]
.
get_legend_handles_labels
()
ax_central
.
legend
(
h1
+
h2
,
l1
+
l2
,
loc
=
'upper left'
)
#
h1, l1 = ax_central.get_legend_handles_labels()
#
h2, l2 = axx[0,0].get_legend_handles_labels()
#
ax_central.legend(h1+h2, l1+l2, loc='upper left')
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment