Commit 410ffe99 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

tod

parent a837143f
from artiq.experiment import *
from pyLIAF.artiq.controllers import UrukulCh
#from artiq.coredevice.ad9910 import PHASE_MODE_ABSOLUTE
import time
import numpy as np
from time import sleep
import socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
address = ('10.99.34.95', 6001)
class FrontalBeamProfile(EnvExperiment):
"""Sweeps picomotor of frontal IR beam and measures fluorescence retrieving beam profile"""
def build(self):
# Agrego kernel invariants a ver si mejoro algo de la performance
#kernel_invariants = getattr(self, 'kernel_invariants', set())
#self.kernel_invariants = kernel_invariants | {"no_measures", "t_cool", "t_trans", "t_readout"}
self.setattr_device("core")
self.setattr_device("ccb")
self.pmt = self.get_device("ttl0")
#self.laserUV = UrukulCh(self, ch=2, freq=110.0, amp=0.3, name="UV") #corresponde a 0.7 Vpp
#self.laserIR1 = UrukulCh(self, ch=1, freq=208.0, amp=0.35, name="IR1") #corresponde a 0.8 Vpp
#self.laserIR2 = UrukulCh(self, ch=3, freq=80.0, amp=0.2, name="IR2") #corresponde a 0.8 Vpp
#self.laserIR2shift = UrukulCh(self, ch=0, freq=270.0, amp=0.7, name="IR2shift") #corresponde a 0.8 Vpp
self.setattr_argument(f"IR2_freq",
NumberValue(85*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Measurement params")
self.setattr_argument(f"IR2_amp",
NumberValue(0.3, min=0., max=0.8),
"Measurement params")
self.setattr_argument(f"t_readout",
NumberValue(300*ms, unit='ms', scale=ms, min=1*ms),
"Measurement params")
self.setattr_argument(f"IR2_final_freq",
NumberValue(85*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Final params")
self.setattr_argument(f"IR2_final_amp",
NumberValue(0.3, min=0.0, max=0.35),
"Final params")
self.setattr_argument("Channel",
EnumerationValue(["1", "2"]),
"Motor params")
self.setattr_argument(f"Steps",
NumberValue(50, min=-1000, max=1000),
"Motor params")
self.setattr_argument(f"Measurements",
NumberValue(100, min=1, max=100000),
"Motor params")
self.setattr_argument("Return", BooleanValue(1==0), "Motor params")
self.setattr_argument("Comments", StringValue(" "), "General comments")
@rpc
def create_datasets(self):
#self.set_dataset("no_measures", self.no_measures, broadcast=True, archive=True)
#self.set_dataset("no_frequencies", len(self.UV_Freqs.sequence), broadcast=True, archive=True)
self.set_dataset("IR2_freq", self.IR2_freq, broadcast=False, archive=True)
self.set_dataset("IR2_amp", self.IR2_amp, broadcast=False, archive=True)
self.set_dataset("t_readout", self.t_readout, broadcast=False, archive=True)
self.set_dataset("Channel", self.Channel, broadcast=False, archive=True)
self.set_dataset("Steps", self.Steps, broadcast=False, archive=True)
self.set_dataset("Measurements", self.Measurements, broadcast=False, archive=True)
self.set_dataset("array_steps", np.linspace(0,int(self.Steps*self.Measurements),int(self.Measurements)), broadcast=True, archive=True)
self.set_dataset("counts_spectrum", np.zeros(int(self.Measurements), dtype=int), broadcast=True, archive=True)
self.set_dataset("Comments", self.Comments, broadcast=False, archive=True)
@rpc(flags={"async"})
def create_applets(self):
self.ccb.issue("create_applet", "Beam_profile",
"${python} -m pyLIAF.artiq.applets.plot_xy "
"counts_spectrum "
"--x array_steps")
@rpc
def initialize_motor_com(self):
client_socket.connect(address)
print('motor comm initialized')
sleep(1)
@rpc
def change_motor_value(self):
client_socket.sendall(f"{self.Channel} {int(self.Steps)}".encode())
response = client_socket.recv(1024)
sleep(0.2)
@rpc
def end_motor_com(self):
client_socket.sendall(b'exit')
response = client_socket.recv(1024)
print(response.decode())
client_socket.close()
print('todo concluye al fin')
@rpc
def return_motor_value(self):
client_socket.sendall(f"{self.Channel} {-1*int(self.Steps)}".encode())
response = client_socket.recv(1024)
sleep(0.2)
@kernel
def run(self):
self.initialize_motor_com()
#t_cool_mu = self.core.seconds_to_mu(self.t_cool) # Precomputo esto para despues
self.create_datasets()
self.create_applets()
#self.init_kernel()
delay(10*ms)
# self.laserIR2.on()
for runN in range(int(self.Measurements)):
delay(10*ms)
self.change_motor_value()
cuentas = self.readout() # Hago la medicion y vuelvo con las cuentas
self.mutate_dataset("counts_spectrum", runN, cuentas)
if self.Return:
for runN in range(int(self.Measurements)):
delay(10*ms)
self.return_motor_value()
#cuentas = self.readout() # Hago la medicion y vuelvo con las cuentas
#self.mutate_dataset("counts_spectrum", runN, cuentas)
self.core.break_realtime()
delay(50*ms)
self.end_motor_com()
print("jose maria listorti")
@kernel
def init_kernel(self):
self.core.reset()
self.pmt.input()
#self.laserUV.initialize_channel()
#self.laserIR.initialize_channel()
delay(1*ms)
# Seteo los perfiles 0 y 1 con los mismos valores
# el 0 va a ser el de ENFRIADO, el 1 va a ser el de MEDICION y el 2 va a ser de CALENTAMIENTO
#self.laserIR1.set_channel()
#self.laserUV.set_channel()
#self.laserIR2.set_channel()
#self.laserIR2shift.set_channel()
#self.laserIR1.set_frequency(self.IR1_cooling_freq, self.IR1_cooling_amp, profile=0)
#self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=0)
#self.laserUV.set_frequency(self.UV_cooling_freq, self.UV_cooling_amp, profile=0)
#self.laserIR2.set_frequency(self.IR2_cooling_freq, self.IR2_cooling_amp, profile=0)
#self.laserIR1.set_channel(profile=1)
#self.core.break_realtime()
#self.laserUV.set_channel(profile=1)
#self.core.break_realtime()
#self.laserIR2shift.set_channel(profile=1)
self.core.break_realtime()
self.laserIR2.set_channel(profile=1)
self.core.break_realtime()
self.laserUV.set_frequency(self.UV_CPT_freq, self.UV_CPT_amp, profile=1)
#self.laserUV.set_frequency(self.UV_CPT_freq, 0.07, profile=1)
self.core.break_realtime()
self.laserIR2.set_frequency(self.IR2_CPT_freq, self.IR2_CPT_amp, profile=1)
self.core.break_realtime()
self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=1)
#self.laserTISA.set_frequency(self.TISA_CPT_freq, 0.035, profile=1)
self.core.break_realtime()
#self.laserIR1.set_channel(profile=2)
#self.core.break_realtime()
#self.laserUV.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR2.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR2shift.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR1.set_frequency(self.IR1_cooling_freq, self.IR1_cooling_amp, profile=2)
#self.core.break_realtime()
#self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=2)
#self.core.break_realtime()
#self.laserUV.set_frequency(self.UV_cooling_freq, self.UV_cooling_amp, profile=2)
#self.core.break_realtime()
#self.laserIR2.set_frequency(self.IR2_cooling_freq, self.IR2_cooling_amp, profile=2)
# Me aseguro que todo termine antes de seguir
self.core.break_realtime()
self.core.wait_until_mu(now_mu())
@kernel
def readout(self) -> TInt64:
"""Registro de cuentas emitidas"""
self.core.break_realtime()
delay(50*ms)
here = self.pmt.gate_rising(self.t_readout) # Que mida durante t_readout
return self.pmt.count(here) # recupero las cuentas medidas
from artiq.experiment import *
from pyLIAF.artiq.controllers import UrukulCh
#from artiq.coredevice.ad9910 import PHASE_MODE_ABSOLUTE
import time
import numpy as np
from time import sleep
PORT = 60000
PASS = b'Secr3t Pa55W0rd'
from multiprocessing.connection import Client
class IR_Scan_withcal_optimized(EnvExperiment):
"""Can change dc voltages - Two IR lasers - IR frequency sweep with calibration - First N freqs, then change freq - Optimized delays"""
def build(self):
# Agrego kernel invariants a ver si mejoro algo de la performance
kernel_invariants = getattr(self, 'kernel_invariants', set())
self.kernel_invariants = kernel_invariants | {"no_measures", "t_cool", "t_trans", "t_readout"}
self.setattr_device("core")
self.setattr_device("ccb")
self.pmt = self.get_device("ttl0")
self.laserUV = UrukulCh(self, ch=2, freq=110.0, amp=0.3, name="UV") #corresponde a 0.7 Vpp
self.laserIR1 = UrukulCh(self, ch=1, freq=208.0, amp=0.35, name="IR1") #corresponde a 0.8 Vpp
self.laserIR2 = UrukulCh(self, ch=3, freq=80.0, amp=0.2, name="IR2") #corresponde a 0.8 Vpp
self.laserIR2shift = UrukulCh(self, ch=0, freq=270.0, amp=0.7, name="IR2shift") #corresponde a 0.8 Vpp
self.setattr_argument("Fine_scan", BooleanValue(1==0), "Experiment params")
self.setattr_argument("no_measures",
NumberValue(2000, min=1, ndecimals=0, step=1),
"Experiment params")
self.setattr_argument(f"IR1_cooling_freq",
NumberValue(229*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Cooling params")
self.setattr_argument(f"IR1_cooling_amp",
NumberValue(0.25, min=0.0, max=0.35),
"Cooling params")
self.setattr_argument(f"UV_cooling_freq",
NumberValue(112*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Cooling params")
self.setattr_argument(f"UV_cooling_amp",
NumberValue(0.1, min=0.0, max=0.3),
"Cooling params")
self.setattr_argument(f"IR2_cooling_freq",
NumberValue(80*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Cooling params")
self.setattr_argument(f"IR2_cooling_amp",
NumberValue(0.3, min=0.0, max=0.8),
"Cooling params")
self.setattr_argument(f"UV_CPT_freq",
NumberValue(118*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"CPT params")
self.setattr_argument(f"UV_CPT_amp",
NumberValue(0.1, min=0.000, max=0.300, step=0.001),
"CPT params")
self.setattr_argument(f"IR2_CPT_freq",
NumberValue(85*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"CPT params")
self.setattr_argument(f"IR2_CPT_amp",
NumberValue(0.3, min=0., max=0.8),
"CPT params")
self.setattr_argument(f"IR1_final_freq",
NumberValue(229*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Final params")
self.setattr_argument(f"IR1_final_amp",
NumberValue(0.23, min=0.0, max=0.35),
"Final params")
self.setattr_argument(f"UV_final_freq",
NumberValue(115*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Final params")
self.setattr_argument(f"UV_final_amp",
NumberValue(0.11, min=0.0, max=0.3),
"Final params")
self.setattr_argument(f"IR2_final_freq",
NumberValue(80*MHz, unit='MHz', scale=MHz, min=1*MHz, max=400*MHz),
"Final params")
self.setattr_argument(f"IR2_final_amp",
NumberValue(0.3, min=0.0, max=0.8),
"Final params")
self.setattr_argument(f"t_cool",
NumberValue(1000*us, unit='us', scale=us, min=1*us),
"Experiment params")
self.setattr_argument(f"t_trans",
NumberValue(10*us, unit='us', scale=us, min=1*us),
"Experiment params")
self.setattr_argument(f"t_readout",
NumberValue(50*us, unit='us', scale=us, min=1*us),
"Experiment params")
self.setattr_argument(f"t_heating",
NumberValue(1*ms, unit='ms', scale=ms),
"Experiment params")
self.setattr_argument("Heating", BooleanValue(1==0), "Experiment params")
self.setattr_argument("Scan_type",
EnumerationValue(["Calibrated_scan", "Defined_scan"]),
"Scan params")
self.setattr_argument("Scanning_frequencies", Scannable(
default=CenterScan(210*MHz, 20*MHz, 0.1*MHz),
unit="MHz",
scale=MHz,
global_min = 1*MHz,
global_max = 400*MHz
),
"Scan params")
self.setattr_argument("Sweep_type",
EnumerationValue(["heating_time", "volt_dcA", "volt_dcB", "volt_compOven"]),
"Scan params")
self.setattr_argument("Plot_type",
EnumerationValue(["relative_depths", "absolute_depths"]),
"Scan params")
self.setattr_argument("Scanning_voltages", Scannable(
default=CenterScan(1, 0.1, 0.1),
global_min = -7,
global_max = 7
),
"Scan params")
self.setattr_argument("Scanning_heattimes", Scannable(
default=CenterScan(1*ms, 0.1*ms, 0.1*ms),
unit="ms",
scale=ms,
global_min = 0*ms,
global_max = 1000*ms
),
"Scan params")
self.setattr_argument("Comments", StringValue(" "), "General comments")
@rpc
def create_datasets(self):
#self.set_dataset("measurements", np.zeros(len(self.UV_Freqs.sequence)*self.no_measures, dtype=int), broadcast=True, archive=True)
#self.set_dataset("counts_spectrum", np.zeros(len(self.UV_Freqs.sequence), dtype=int), broadcast=True, archive=True)
#self.set_dataset("UV_frequencies", self.UV_Freqs.sequence, broadcast=True, archive=True)
#self.set_dataset("UV_amplitudes", self.Test_Experiment_amps, broadcast=True, archive=True)
#freqs = self.get_dataset("UV_Frequencies")
self.set_dataset("no_measures", self.no_measures, broadcast=True, archive=True)
#self.set_dataset("no_frequencies", len(self.UV_Freqs.sequence), broadcast=True, archive=True)
self.set_dataset("IR1_cooling_freq", self.IR1_cooling_freq, broadcast=False, archive=True)
self.set_dataset("IR1_cooling_amp", self.IR1_cooling_amp, broadcast=False, archive=True)
self.set_dataset("UV_cooling_freq", self.UV_cooling_freq, broadcast=False, archive=True)
self.set_dataset("UV_cooling_amp", self.UV_cooling_amp, broadcast=False, archive=True)
self.set_dataset("IR2_cooling_freq", self.IR2_cooling_freq, broadcast=False, archive=True)
self.set_dataset("IR2_cooling_amp", self.IR2_cooling_amp, broadcast=False, archive=True)
self.set_dataset("UV_CPT_freq", self.UV_CPT_freq, broadcast=False, archive=True)
self.set_dataset("UV_CPT_amp", self.UV_CPT_amp, broadcast=False, archive=True)
self.set_dataset("IR2_CPT_freq", self.IR2_CPT_freq, broadcast=False, archive=True)
self.set_dataset("IR2_CPT_amp", self.IR2_CPT_amp, broadcast=False, archive=True)
self.set_dataset("scanning_heattimes", self.Scanning_heattimes.sequence, broadcast=True, archive=True)
self.set_dataset("scanning_voltages", self.Scanning_voltages.sequence, broadcast=True, archive=True)
self.set_dataset("t_cool", self.t_cool, broadcast=False, archive=True)
self.set_dataset("t_trans", self.t_trans, broadcast=False, archive=True)
self.set_dataset("t_readout", self.t_readout, broadcast=False, archive=True)
self.set_dataset("t_heating", self.t_heating, broadcast=False, archive=True)
if self.Sweep_type == 'heating_time':
self.set_dataset("plot_array", np.zeros(len(self.Scanning_heattimes.sequence)), broadcast=True, archive=True)
else:
self.set_dataset("plot_array", np.zeros(len(self.Scanning_voltages.sequence)), broadcast=True, archive=True)
self.set_dataset("scanned", self.Sweep_type, broadcast=False, archive=True)
self.set_dataset("initialvoltage_dcA", self.read_dcvoltage(cmd="volt_dcA")[0], broadcast=False, archive=True)
self.set_dataset("initialvoltage_dcB", self.read_dcvoltage(cmd="volt_dcB")[0], broadcast=False, archive=True)
self.set_dataset("initialvoltage_compOven", self.read_dcvoltage(cmd="volt_compOven")[0], broadcast=False, archive=True)
self.set_dataset("t_heating", self.t_heating, broadcast=False, archive=True)
self.set_dataset("Comments", self.Comments, broadcast=False, archive=True)
@rpc(flags={"async"})
def create_applets(self, no_freqs):
self.ccb.issue("create_applet", "IR_espectro_fixeddelays",
"${python} -m pyLIAF.artiq.applets.plot_xy "
"counts_spectrum "
"--x IR1_Frequencies")
self.ccb.issue("create_applet", "DR_depth",
"${python} -m pyLIAF.artiq.applets.plot_xy "
"plot_array "
"--x scanning_heattimess")
self.ccb.issue("create_applet", "spectrum_realtime",
"${python} -m pyLIAF.artiq.applets.plot_xy "
"freqplot_array "
"--x IR1_Frequencies")
@rpc
def Get_Calibrated_Frequencies(self) -> TList(TFloat):
if self.Fine_scan:
Calibrated_Experiment_freqs = self.get_dataset("Experiment_freqs_IR_fine")
else:
Calibrated_Experiment_freqs = self.get_dataset("Experiment_freqs_IR")
self.set_dataset("IR1_Frequencies_calibrated", np.array(Calibrated_Experiment_freqs), broadcast=True, archive=True)
if self.Scan_type == "Calibrated_scan":
Experiment_freqs = Calibrated_Experiment_freqs
elif self.Scan_type == "Defined_scan":
Experiment_freqs = self.Scanning_frequencies.sequence
self.set_dataset("IR1_Frequencies", np.array(Experiment_freqs), broadcast=True, archive=True)
self.set_dataset("no_freqs", len(Calibrated_Experiment_freqs), broadcast=True, archive=True)
self.set_dataset("counts_spectrum", np.zeros(len(Experiment_freqs), dtype=int), broadcast=True, archive=True)
if self.Sweep_type == 'heating_time':
self.set_dataset("data_array", np.zeros(len(self.Scanning_heattimes.sequence)*len(Experiment_freqs), dtype=int), broadcast=False, archive=True)
else:
self.set_dataset("data_array", np.zeros(len(self.Scanning_voltages.sequence)*len(Experiment_freqs), dtype=int), broadcast=False, archive=True)
return Experiment_freqs
@rpc
def Get_Calibrated_Amplitudes(self) -> TList(TFloat):
if self.Fine_scan:
Calibrated_Experiment_amps = list(self.get_dataset("Experiment_amps_IR_fine"))
else:
Calibrated_Experiment_amps = list(self.get_dataset("Experiment_amps_IR"))
self.set_dataset("IR1_Amplitudes_calibrated", Calibrated_Experiment_amps, broadcast=True, archive=True)
if self.Scan_type == "Calibrated_scan":
Experiment_amps = Calibrated_Experiment_amps
elif self.Scan_type == "Defined_scan":
Experiment_amps = []
Experiment_freqs = self.Scanning_frequencies.sequence
if self.Fine_scan:
Calibrated_Experiment_freqs = self.get_dataset("Experiment_freqs_IR_fine")
else:
Calibrated_Experiment_freqs = self.get_dataset("Experiment_freqs_IR")
for f in Experiment_freqs:
idx = (np.abs(np.asarray(Calibrated_Experiment_freqs) - f)).argmin() #busco el valor mas cercano en las freqs calibradas
Experiment_amps.append(Calibrated_Experiment_amps[idx])
self.set_dataset("IR1_Amplitudes", Experiment_amps, broadcast=True, archive=True)
return Experiment_amps
@rpc
def initialize_andor_com(self):
print('tuki')
address = ('localhost', PORT)
self.conn = Client(address, authkey=PASS)
sleep(0.1)
@rpc
def change_dcvoltage(self,volt,cmd='volt_compOven'):
self.conn.send(f'{cmd} {volt}')
rta = self.conn.recv()
@rpc
def read_dcvoltage(self,cmd='volt_compOven') -> TList(TFloat):
self.conn.send(f'{cmd}')
rta = self.conn.recv()
return [rta]
@kernel
def run(self):
initial_voltage = [0.2]
self.initialize_andor_com()
if not self.Sweep_type == "heating_time":
print('ojo')
initial_voltage = self.read_dcvoltage(cmd=self.Sweep_type)
print('initial voltage: ', initial_voltage[0])
t_cool_mu = self.core.seconds_to_mu(self.t_cool) # Precomputo esto para despues
cuentas = 0
Freqs = self.Get_Calibrated_Frequencies()
Amps = self.Get_Calibrated_Amplitudes()
Heattimes = self.Scanning_heattimes.sequence
Voltages = self.Scanning_voltages.sequence
self.create_datasets()
self.create_applets(len(Freqs))
self.init_kernel()
delay(1*ms)
self.laserIR1.on()
self.laserIR2.on()
self.laserIR2shift.on()
self.laserUV.on()
self.enfriar_ion()
if not self.Sweep_type == "heating_time":
voltage_index = 0
while voltage_index < len(Voltages):
if not self.Sweep_type == "heating_time":
self.change_dcvoltage(Voltages[voltage_index], cmd=self.Sweep_type)
iter_index = 0
temporal_freq_list=[0]*len(Freqs)
while iter_index < len(Freqs):
Accumulated_counts = 0
self.core.break_realtime()
delay(10000*us)
self.laserIR1.set_frequency(Freqs[iter_index], Amps[iter_index], profile=1) # Cambio la frec del perfil 1 (estoy en el 0)
for runN in range(self.no_measures):
if runN % 20 == 0:
delay(self.t_cool)
else:
delay(200*us)
if self.Heating:
self.laserUV.off()
delay(self.t_heating)
self.laserUV.on()
cuentas = self.readout() # Hago la medicion y vuelvo con las cuentas
Accumulated_counts = Accumulated_counts + cuentas
self.mutate_dataset("data_array", voltage_index*len(Freqs)+iter_index, Accumulated_counts)
temporal_freq_list[iter_index] = Accumulated_counts
delay(5000*us)
self.mutate_dataset("counts_spectrum", iter_index, Accumulated_counts)
iter_index = iter_index + 1
if self.Plot_type == 'relative_depths':
self.mutate_dataset("plot_array", voltage_index, (temporal_freq_list[0]-temporal_freq_list[1])/temporal_freq_list[0])
elif self.Plot_type == 'absolute_depths':
self.mutate_dataset("plot_array", voltage_index, temporal_freq_list[1])
voltage_index = voltage_index + 1
delay(500*us)
if self.Sweep_type == "heating_time":
voltage_index = 0
while voltage_index < len(Heattimes):
iter_index = 0
temporal_freq_list=[0]*len(Freqs)
while iter_index < len(Freqs):
Accumulated_counts = 0
self.core.break_realtime()
delay(10000*us)
self.laserIR1.set_frequency(Freqs[iter_index], Amps[iter_index], profile=1) # Cambio la frec del perfil 1 (estoy en el 0)
for runN in range(self.no_measures):
if runN % 20 == 0:
delay(self.t_cool)
else:
delay(100*us)
self.laserUV.off()
delay(Heattimes[voltage_index])
self.laserUV.on()
self.core.break_realtime()
delay(20*us)
cuentas = self.readout() # Hago la medicion y vuelvo con las cuentas
Accumulated_counts = Accumulated_counts + cuentas
self.mutate_dataset("data_array", voltage_index*len(Freqs)+iter_index, Accumulated_counts)
temporal_freq_list[iter_index] = Accumulated_counts
delay(5000*us)
self.mutate_dataset("counts_spectrum", iter_index, Accumulated_counts)
iter_index = iter_index + 1
print("done time")
if self.Plot_type == 'relative_depths':
self.mutate_dataset("plot_array", voltage_index, (temporal_freq_list[0]-temporal_freq_list[1])/temporal_freq_list[0])
elif self.Plot_type == 'absolute_depths':
self.mutate_dataset("plot_array", voltage_index, temporal_freq_list[1])
voltage_index = voltage_index + 1
delay(500*us)
self.core.break_realtime()
delay(50*us)
self.laserUV.select_profile(1)
self.laserIR1.select_profile(1)
self.laserIR2.select_profile(1)
self.laserUV.set_frequency(self.UV_final_freq, self.UV_final_amp, profile=1)
self.core.break_realtime()
delay(50*us)
self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=1)
self.core.break_realtime()
delay(50*us)
self.laserIR1.set_frequency(self.IR1_final_freq, self.IR1_final_amp, profile=1)
self.core.break_realtime()
delay(50*us)
self.laserIR2.set_frequency(self.IR2_final_freq, self.IR2_final_amp, profile=1)
self.core.break_realtime()
delay(50*us)
if not self.Sweep_type == "heating_time":
self.change_dcvoltage(initial_voltage[0], cmd=self.Sweep_type)
print("jose maria listorti")
@kernel
def init_kernel(self):
self.core.reset()
self.pmt.input()
#self.laserUV.initialize_channel()
#self.laserIR.initialize_channel()
delay(1*ms)
# Seteo los perfiles 0 y 1 con los mismos valores
# el 0 va a ser el de ENFRIADO, el 1 va a ser el de MEDICION y el 2 va a ser de CALENTAMIENTO
self.laserIR1.set_channel()
self.laserUV.set_channel()
self.laserIR2.set_channel()
self.laserIR2shift.set_channel()
self.laserIR1.set_frequency(self.IR1_cooling_freq, self.IR1_cooling_amp, profile=0)
self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=0)
self.laserUV.set_frequency(self.UV_cooling_freq, self.UV_cooling_amp, profile=0)
self.laserIR2.set_frequency(self.IR2_cooling_freq, self.IR2_cooling_amp, profile=0)
self.laserIR1.set_channel(profile=1)
self.core.break_realtime()
self.laserUV.set_channel(profile=1)
self.core.break_realtime()
self.laserIR2shift.set_channel(profile=1)
self.core.break_realtime()
self.laserIR2.set_channel(profile=1)
self.core.break_realtime()
self.laserUV.set_frequency(self.UV_CPT_freq, self.UV_CPT_amp, profile=1)
#self.laserUV.set_frequency(self.UV_CPT_freq, 0.07, profile=1)
self.core.break_realtime()
self.laserIR2.set_frequency(self.IR2_CPT_freq, self.IR2_CPT_amp, profile=1)
self.core.break_realtime()
self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=1)
#self.laserTISA.set_frequency(self.TISA_CPT_freq, 0.035, profile=1)
self.core.break_realtime()
#self.laserIR1.set_channel(profile=2)
#self.core.break_realtime()
#self.laserUV.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR2.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR2shift.set_channel(profile=2)
#self.core.break_realtime()
#self.laserIR1.set_frequency(self.IR1_cooling_freq, self.IR1_cooling_amp, profile=2)
#self.core.break_realtime()
#self.laserIR2shift.set_frequency(270*MHz, 0.7, profile=2)
#self.core.break_realtime()
#self.laserUV.set_frequency(self.UV_cooling_freq, self.UV_cooling_amp, profile=2)
#self.core.break_realtime()
#self.laserIR2.set_frequency(self.IR2_cooling_freq, self.IR2_cooling_amp, profile=2)
# Me aseguro que todo termine antes de seguir
self.core.break_realtime()
self.core.wait_until_mu(now_mu())
@kernel
def enfriar_ion(self):
"""Enfrio llevando el laser IR a una cierta frecuencia"""
self.laserIR1.select_profile(0) # Pongo el laser en el perfil referencia
self.laserUV.select_profile(0) # Pongo el laser en el perfil referencia
self.laserIR2.select_profile(0)
self.laserIR2shift.select_profile(0)
@kernel
def calentar_ion(self):
"""Caliento el ion por un tiempo determinado apagando el laser UV"""
self.laserUV.off()
@kernel
def readout(self) -> TInt64:
"""Registro de cuentas emitidas"""
self.laserUV.select_profile(1) # Paso al perfil que cambia
self.laserIR1.select_profile(1) # Paso al perfil que cambia
self.laserIR2.select_profile(1) # Paso al perfil que cambia
self.laserIR2shift.select_profile(1)
delay(self.t_trans)
here = self.pmt.gate_rising(self.t_readout) # Que mida durante t_readout
self.enfriar_ion() # ya pongo a enfriar, asi todos los retardos estan enfriando
return self.pmt.count(here) # recupero las cuentas medidas
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment