Commit 5e8021f6 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto
parents 7a7541c6 058680d2
......@@ -26,6 +26,8 @@ amp2=2*np.pi/w2
plt.figure()
plt.plot(r,1*OAM(r,w1,amp1))
plt.plot(r,1*OAM(r,w2,amp2))
plt.plot(r,1*OAM(r,w2*1.5,amp2*1.5))
plt.plot(r,1*OAM(r,w2*1.7,amp2*1.7))
#%%
plt.figure()
plt.plot(r,OAM(r,w1,amp1)/RDE(r,2,2))
......
......@@ -589,8 +589,8 @@ beta_vector = np.arange(0,2,0.01)
comparison = []
for beta_target in beta_vector:
factor1 = popt_rho22_balance[1]*(hbar/kb)*MicromotionSpectra(beta_target,2*np.pi*popt_rho22_balance[0],2*np.pi*23e6)
factor2 = popt_rho22_balance[2]*(beta_target**2)
factor1 = 1*(hbar/kb)*MicromotionSpectra(beta_target,2*np.pi*popt_rho22_balance[0],2*np.pi*23e6)
factor2 = popt_rho22_balance[1]*(beta_target**2)
comparison.append(factor2/factor1)
plt.figure()
......
......@@ -122,9 +122,9 @@ power=1
palette = sns.color_palette("tab10")
pmlocmedvec1=list(np.arange(0,len(PIEZOS1_FILES),1))
pmlocmedvec1=list(np.arange(0,len(PIEZOS1_FILES)-2,1))
#pmlocmedvec1 = [6]
#pmlocmedvec1 = []
plt.figure()
......@@ -219,7 +219,7 @@ palette = sns.color_palette("tab10")
pmlocmedvec2=list(np.arange(0,len(PIEZOS2_FILES),1))
#pmlocmedvec2 = [0,1,2]
#pmlocmedvec2 = [4]
plt.figure()
......@@ -243,6 +243,8 @@ for med in pmlocmedvec2:
if med==3:
popt, pcov = curve_fit(Lorentzian, np.array(Freqs[0:70]), np.array(Counts[0:70]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
if med==4:
popt, pcov = curve_fit(Lorentzian, np.array(Freqs[0:-4]), np.array(Counts[0:-4]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
# elif med==7:
# k=60
# popt, pcov = curve_fit(Lorentzian, np.array(Freqs[0:10]+Freqs[k:]), np.array(Counts[0:10]+Counts[k:]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
......@@ -250,8 +252,11 @@ for med in pmlocmedvec2:
# elif med==10:
# popt, pcov = curve_fit(Lorentzian, np.array(Freqs[6:80]), np.array(Counts[6:80]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
# elif med==12:
# popt, pcov = curve_fit(Lorentzian, np.array(Freqs[:75]), np.array(Counts[:75]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
elif med==25:
print('che')
k1,k2=0,40
k3,k4=-20,-1
popt, pcov = curve_fit(Lorentzian, np.array(Freqs[k1:k2]+Freqs[k3:k4]), np.array(Counts[k1:k2]+Counts[k3:k4]), p0=(-2000,2100,435.8,0.05,0.1), bounds=((-100000,0,435.5,0,0),(0,1e5, 436.1, 10,10000)))
else:
......@@ -347,6 +352,127 @@ plt.grid()
plt.xlabel('Distance to center of beam (steps)')
plt.ylabel('DR depth / Beam intensity')
plt.savefig('/home/nico/Documents/artiq_experiments/analisis/plots/20240312_RotationalDopplerShift_news/scaleinvariance.jpg')
#plt.savefig('/home/nico/Documents/artiq_experiments/analisis/plots/20240312_RotationalDopplerShift_news/scaleinvariance.jpg')
#%%
"""
Intento ajustar con un modelo
F(r)=A*( r²/(r²+b²)
"""
from scipy.optimize import curve_fit
def modelo1(r,a,b):
k = 2
return a*((r**k/(b**k+r**k)))
rfit = np.arange(x2,len(Intensityver2)*20+x2,20)
yfit = [p for p in pmdepthsdrver2]
rlong = np.arange(0,1000,1)
popt,pcov = curve_fit(modelo1,rfit,yfit)
plt.figure()
plt.errorbar(np.arange(x1,len(Intensityver1)*20+x1,20), [p for p in pmdepthsdrver1], yerr= errorpmdepthsdrver1, fmt='o',color='red', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xchicofinal],[i/np.max(IntensityChico) for i in IntensityChico],'o',color='red',alpha=0.3)
plt.errorbar(np.arange(x2,len(Intensityver2)*20+x2,20), [p for p in pmdepthsdrver2], yerr= errorpmdepthsdrver2, fmt='o',color='blue', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xgrandefinal],[i/np.max(IntensityGrande) for i in IntensityGrande],'o',color='blue',alpha=0.3)
plt.plot(rlong,modelo1(rlong,*popt),zorder=2,color='black',linewidth=3,linestyle='dashed',label=r'$I(r)=A\,\frac{r^2}{r^2+b^2}$')
plt.xlim(-20,600+x2+10)
plt.legend()
plt.grid()
#%%
"""
Va otro modelo con funciones de bessel
F(r) = 1-(J_0 (b*r))²
"""
from scipy.special import jv
def modelo2(r,a,b):
return a*(1-(jv(0, b*(r))**2))
rfit = np.arange(x2,len(Intensityver2)*20+x2,20)
yfit = [p for p in pmdepthsdrver2]
rlong = np.arange(0,1000,1)
popt,pcov = curve_fit(modelo2,rfit,yfit,p0=(0.7,0.005))
print(popt)
plt.figure()
plt.errorbar(np.arange(x1,len(Intensityver1)*20+x1,20), [p for p in pmdepthsdrver1], yerr= errorpmdepthsdrver1, fmt='o',color='red', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xchicofinal],[i/np.max(IntensityChico) for i in IntensityChico],'o',color='red',alpha=0.3)
plt.errorbar(np.arange(x2,len(Intensityver2)*20+x2,20), [p for p in pmdepthsdrver2], yerr= errorpmdepthsdrver2, fmt='o',color='blue', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xgrandefinal],[i/np.max(IntensityGrande) for i in IntensityGrande],'o',color='blue',alpha=0.3)
plt.plot(rlong,modelo2(rlong,*popt),zorder=2,color='black',linewidth=3,linestyle='dashed',label=r'$I(r)=a\,(1-(J_0(br)))$')
plt.xlim(-20,600+x2+10)
plt.legend(loc='upper left')
plt.grid()
#%%
"""
Va otro modelo con funciones de bessel
F(r) = A*(J_0 (b/r))²
"""
from scipy.special import jv
def modelo3(r,a,b):
return a*((jv(0, b*(1/r)))**2)
rfit = np.arange(x2,len(Intensityver2)*20+x2,20)
yfit = [p for p in pmdepthsdrver2]
rlong = np.arange(0,1000,1)
popt,pcov = curve_fit(modelo3,rfit,yfit,p0=(0.7,1))
print(popt)
plt.figure()
plt.errorbar(np.arange(x1,len(Intensityver1)*20+x1,20), [p for p in pmdepthsdrver1], yerr= errorpmdepthsdrver1, fmt='o',color='red', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xchicofinal],[i/np.max(IntensityChico) for i in IntensityChico],'o',color='red',alpha=0.3)
plt.errorbar(np.arange(x2,len(Intensityver2)*20+x2,20), [p for p in pmdepthsdrver2], yerr= errorpmdepthsdrver2, fmt='o',color='blue', capsize=3, markersize=8,zorder=1)
plt.plot([x*20 for x in xgrandefinal],[i/np.max(IntensityGrande) for i in IntensityGrande],'o',color='blue',alpha=0.3)
plt.plot(rlong,modelo3(rlong,*popt),zorder=2,color='black',linewidth=3,linestyle='dashed',label=r'$I(r)=a\,(J_0(\frac{b}{r}))^2$')
plt.xlim(-20,600+x2+10)
plt.legend()
plt.grid()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment