Commit 71d54456 authored by Muriel Bonetto's avatar Muriel Bonetto

Analisis de CPT con temperatura para las ultimas mediciones

parent d2ac3455
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -14,12 +14,15 @@ from scipy import interpolate ...@@ -14,12 +14,15 @@ from scipy import interpolate
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230424_CPT_TemperatureSens/Data/') os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230424_CPT_TemperatureSens/Data/')
#os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20230424_CPT_TemperatureSens/Data/')
CPT_FILES = """000011345-IR_Scan_withcal_optimized CPT_FILES = """000011345-IR_Scan_withcal_optimized
000011331-IR_Scan_withcal_optimized 000011331-IR_Scan_withcal_optimized
""" """
HEATING_FILES = """000011346-IR_Scan_withcal_optimized
000011347-IR_Scan_withcal_optimized HEATING_FILES = """000015318-IR_Scan_withcal_optimized
000015319-IR_Scan_withcal_optimized
000011348-IR_Scan_withcal_optimized 000011348-IR_Scan_withcal_optimized
000011349-IR_Scan_withcal_optimized 000011349-IR_Scan_withcal_optimized
000011350-IR_Scan_withcal_optimized 000011350-IR_Scan_withcal_optimized
...@@ -32,6 +35,13 @@ HEATING_FILES = """000011346-IR_Scan_withcal_optimized ...@@ -32,6 +35,13 @@ HEATING_FILES = """000011346-IR_Scan_withcal_optimized
000011344-IR_Scan_withcal_optimized 000011344-IR_Scan_withcal_optimized
""" """
CPT_FILES = ''
for i in range(0,20):
CPT_FILES = CPT_FILES + f'0000153{39 + i}-IR_Scan_withcal_optimized\n'
CPT_FILES = CPT_FILES
def SeeKeys(files): def SeeKeys(files):
for i, fname in enumerate(files.split()): for i, fname in enumerate(files.split()):
...@@ -74,6 +84,8 @@ UVCPTAmp_heating = [] ...@@ -74,6 +84,8 @@ UVCPTAmp_heating = []
No_measures_heating = [] No_measures_heating = []
Freqs_heating = [] Freqs_heating = []
#%%
for i, fname in enumerate(HEATING_FILES.split()): for i, fname in enumerate(HEATING_FILES.split()):
print(str(i) + ' - ' + fname) print(str(i) + ' - ' + fname)
#print(fname) #print(fname)
...@@ -95,12 +107,14 @@ for i, fname in enumerate(HEATING_FILES.split()): ...@@ -95,12 +107,14 @@ for i, fname in enumerate(HEATING_FILES.split()):
Ploteo las cpt de referencia / plotting the reference CPT Ploteo las cpt de referencia / plotting the reference CPT
""" """
jvec = [0,1] jvec = [0,1,2,3,4,5,6,7]
jvec = np.arange(0,20)
plt.figure() plt.figure()
i = 0 i = 0
for j in jvec: for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2) #plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j])
i = i + 1 i = i + 1
plt.xlabel('Frecuencia (MHz)') plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts') plt.ylabel('counts')
......
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
<metadata>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<cc:Work>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:date>2023-08-08T19:12:30.567718</dc:date>
<dc:format>image/svg+xml</dc:format>
<dc:creator>
<cc:Agent>
<dc:title>Matplotlib v3.7.1, https://matplotlib.org/</dc:title>
</cc:Agent>
</dc:creator>
</cc:Work>
</rdf:RDF>
</metadata>
<defs>
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="M 0 345.6
L 460.8 345.6
L 460.8 0
L 0 0
z
" style="fill: #ffffff"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="M 57.6 307.584
L 414.72 307.584
L 414.72 41.472
L 57.6 41.472
z
" style="fill: #ffffff"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1">
<g id="line2d_1">
<path d="M 71.790875 307.584
L 71.790875 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_2">
<defs>
<path id="mbf582d2b49" d="M 0 0
L 0 3.5
" style="stroke: #000000; stroke-width: 0.8"/>
</defs>
<g>
<use xlink:href="#mbf582d2b49" x="71.790875" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_1">
<!-- 380 -->
<g transform="translate(62.247125 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-33" d="M 2597 2516
Q 3050 2419 3304 2112
Q 3559 1806 3559 1356
Q 3559 666 3084 287
Q 2609 -91 1734 -91
Q 1441 -91 1130 -33
Q 819 25 488 141
L 488 750
Q 750 597 1062 519
Q 1375 441 1716 441
Q 2309 441 2620 675
Q 2931 909 2931 1356
Q 2931 1769 2642 2001
Q 2353 2234 1838 2234
L 1294 2234
L 1294 2753
L 1863 2753
Q 2328 2753 2575 2939
Q 2822 3125 2822 3475
Q 2822 3834 2567 4026
Q 2313 4219 1838 4219
Q 1578 4219 1281 4162
Q 984 4106 628 3988
L 628 4550
Q 988 4650 1302 4700
Q 1616 4750 1894 4750
Q 2613 4750 3031 4423
Q 3450 4097 3450 3541
Q 3450 3153 3228 2886
Q 3006 2619 2597 2516
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-38" d="M 2034 2216
Q 1584 2216 1326 1975
Q 1069 1734 1069 1313
Q 1069 891 1326 650
Q 1584 409 2034 409
Q 2484 409 2743 651
Q 3003 894 3003 1313
Q 3003 1734 2745 1975
Q 2488 2216 2034 2216
z
M 1403 2484
Q 997 2584 770 2862
Q 544 3141 544 3541
Q 544 4100 942 4425
Q 1341 4750 2034 4750
Q 2731 4750 3128 4425
Q 3525 4100 3525 3541
Q 3525 3141 3298 2862
Q 3072 2584 2669 2484
Q 3125 2378 3379 2068
Q 3634 1759 3634 1313
Q 3634 634 3220 271
Q 2806 -91 2034 -91
Q 1263 -91 848 271
Q 434 634 434 1313
Q 434 1759 690 2068
Q 947 2378 1403 2484
z
M 1172 3481
Q 1172 3119 1398 2916
Q 1625 2713 2034 2713
Q 2441 2713 2670 2916
Q 2900 3119 2900 3481
Q 2900 3844 2670 4047
Q 2441 4250 2034 4250
Q 1625 4250 1398 4047
Q 1172 3844 1172 3481
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-30" d="M 2034 4250
Q 1547 4250 1301 3770
Q 1056 3291 1056 2328
Q 1056 1369 1301 889
Q 1547 409 2034 409
Q 2525 409 2770 889
Q 3016 1369 3016 2328
Q 3016 3291 2770 3770
Q 2525 4250 2034 4250
z
M 2034 4750
Q 2819 4750 3233 4129
Q 3647 3509 3647 2328
Q 3647 1150 3233 529
Q 2819 -91 2034 -91
Q 1250 -91 836 529
Q 422 1150 422 2328
Q 422 3509 836 4129
Q 1250 4750 2034 4750
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-33"/>
<use xlink:href="#DejaVuSans-38" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_2">
<g id="line2d_3">
<path d="M 112.627925 307.584
L 112.627925 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_4">
<g>
<use xlink:href="#mbf582d2b49" x="112.627925" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_2">
<!-- 390 -->
<g transform="translate(103.084175 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-39" d="M 703 97
L 703 672
Q 941 559 1184 500
Q 1428 441 1663 441
Q 2288 441 2617 861
Q 2947 1281 2994 2138
Q 2813 1869 2534 1725
Q 2256 1581 1919 1581
Q 1219 1581 811 2004
Q 403 2428 403 3163
Q 403 3881 828 4315
Q 1253 4750 1959 4750
Q 2769 4750 3195 4129
Q 3622 3509 3622 2328
Q 3622 1225 3098 567
Q 2575 -91 1691 -91
Q 1453 -91 1209 -44
Q 966 3 703 97
z
M 1959 2075
Q 2384 2075 2632 2365
Q 2881 2656 2881 3163
Q 2881 3666 2632 3958
Q 2384 4250 1959 4250
Q 1534 4250 1286 3958
Q 1038 3666 1038 3163
Q 1038 2656 1286 2365
Q 1534 2075 1959 2075
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-33"/>
<use xlink:href="#DejaVuSans-39" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_3">
<g id="line2d_5">
<path d="M 153.464974 307.584
L 153.464974 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_6">
<g>
<use xlink:href="#mbf582d2b49" x="153.464974" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_3">
<!-- 400 -->
<g transform="translate(143.921224 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-34" d="M 2419 4116
L 825 1625
L 2419 1625
L 2419 4116
z
M 2253 4666
L 3047 4666
L 3047 1625
L 3713 1625
L 3713 1100
L 3047 1100
L 3047 0
L 2419 0
L 2419 1100
L 313 1100
L 313 1709
L 2253 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-30" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_4">
<g id="line2d_7">
<path d="M 194.302024 307.584
L 194.302024 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_8">
<g>
<use xlink:href="#mbf582d2b49" x="194.302024" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_4">
<!-- 410 -->
<g transform="translate(184.758274 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-31" d="M 794 531
L 1825 531
L 1825 4091
L 703 3866
L 703 4441
L 1819 4666
L 2450 4666
L 2450 531
L 3481 531
L 3481 0
L 794 0
L 794 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-31" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_5">
<g id="line2d_9">
<path d="M 235.139074 307.584
L 235.139074 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_10">
<g>
<use xlink:href="#mbf582d2b49" x="235.139074" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_5">
<!-- 420 -->
<g transform="translate(225.595324 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-32" d="M 1228 531
L 3431 531
L 3431 0
L 469 0
L 469 531
Q 828 903 1448 1529
Q 2069 2156 2228 2338
Q 2531 2678 2651 2914
Q 2772 3150 2772 3378
Q 2772 3750 2511 3984
Q 2250 4219 1831 4219
Q 1534 4219 1204 4116
Q 875 4013 500 3803
L 500 4441
Q 881 4594 1212 4672
Q 1544 4750 1819 4750
Q 2544 4750 2975 4387
Q 3406 4025 3406 3419
Q 3406 3131 3298 2873
Q 3191 2616 2906 2266
Q 2828 2175 2409 1742
Q 1991 1309 1228 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-32" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_6">
<g id="line2d_11">
<path d="M 275.976123 307.584
L 275.976123 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_12">
<g>
<use xlink:href="#mbf582d2b49" x="275.976123" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_6">
<!-- 430 -->
<g transform="translate(266.432373 322.182437) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-33" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_7">
<g id="line2d_13">
<path d="M 316.813173 307.584
L 316.813173 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_14">
<g>
<use xlink:href="#mbf582d2b49" x="316.813173" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_7">
<!-- 440 -->
<g transform="translate(307.269423 322.182437) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-34" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_8">
<g id="line2d_15">
<path d="M 357.650223 307.584
L 357.650223 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_16">
<g>
<use xlink:href="#mbf582d2b49" x="357.650223" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_8">
<!-- 450 -->
<g transform="translate(348.106473 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-35" d="M 691 4666
L 3169 4666
L 3169 4134
L 1269 4134
L 1269 2991
Q 1406 3038 1543 3061
Q 1681 3084 1819 3084
Q 2600 3084 3056 2656
Q 3513 2228 3513 1497
Q 3513 744 3044 326
Q 2575 -91 1722 -91
Q 1428 -91 1123 -41
Q 819 9 494 109
L 494 744
Q 775 591 1075 516
Q 1375 441 1709 441
Q 2250 441 2565 725
Q 2881 1009 2881 1497
Q 2881 1984 2565 2268
Q 2250 2553 1709 2553
Q 1456 2553 1204 2497
Q 953 2441 691 2322
L 691 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-35" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="xtick_9">
<g id="line2d_17">
<path d="M 398.487273 307.584
L 398.487273 41.472
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_18">
<g>
<use xlink:href="#mbf582d2b49" x="398.487273" y="307.584" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_9">
<!-- 460 -->
<g transform="translate(388.943523 322.182437) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-36" d="M 2113 2584
Q 1688 2584 1439 2293
Q 1191 2003 1191 1497
Q 1191 994 1439 701
Q 1688 409 2113 409
Q 2538 409 2786 701
Q 3034 994 3034 1497
Q 3034 2003 2786 2293
Q 2538 2584 2113 2584
z
M 3366 4563
L 3366 3988
Q 3128 4100 2886 4159
Q 2644 4219 2406 4219
Q 1781 4219 1451 3797
Q 1122 3375 1075 2522
Q 1259 2794 1537 2939
Q 1816 3084 2150 3084
Q 2853 3084 3261 2657
Q 3669 2231 3669 1497
Q 3669 778 3244 343
Q 2819 -91 2113 -91
Q 1303 -91 875 529
Q 447 1150 447 2328
Q 447 3434 972 4092
Q 1497 4750 2381 4750
Q 2619 4750 2861 4703
Q 3103 4656 3366 4563
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-34"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
</g>
</g>
</g>
<g id="text_10">
<!-- Frequency (MHZ) -->
<g transform="translate(193.340469 335.860562) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-46" d="M 628 4666
L 3309 4666
L 3309 4134
L 1259 4134
L 1259 2759
L 3109 2759
L 3109 2228
L 1259 2228
L 1259 0
L 628 0
L 628 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-72" d="M 2631 2963
Q 2534 3019 2420 3045
Q 2306 3072 2169 3072
Q 1681 3072 1420 2755
Q 1159 2438 1159 1844
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1341 3275 1631 3429
Q 1922 3584 2338 3584
Q 2397 3584 2469 3576
Q 2541 3569 2628 3553
L 2631 2963
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-65" d="M 3597 1894
L 3597 1613
L 953 1613
Q 991 1019 1311 708
Q 1631 397 2203 397
Q 2534 397 2845 478
Q 3156 559 3463 722
L 3463 178
Q 3153 47 2828 -22
Q 2503 -91 2169 -91
Q 1331 -91 842 396
Q 353 884 353 1716
Q 353 2575 817 3079
Q 1281 3584 2069 3584
Q 2775 3584 3186 3129
Q 3597 2675 3597 1894
z
M 3022 2063
Q 3016 2534 2758 2815
Q 2500 3097 2075 3097
Q 1594 3097 1305 2825
Q 1016 2553 972 2059
L 3022 2063
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-71" d="M 947 1747
Q 947 1113 1208 752
Q 1469 391 1925 391
Q 2381 391 2643 752
Q 2906 1113 2906 1747
Q 2906 2381 2643 2742
Q 2381 3103 1925 3103
Q 1469 3103 1208 2742
Q 947 2381 947 1747
z
M 2906 525
Q 2725 213 2448 61
Q 2172 -91 1784 -91
Q 1150 -91 751 415
Q 353 922 353 1747
Q 353 2572 751 3078
Q 1150 3584 1784 3584
Q 2172 3584 2448 3432
Q 2725 3281 2906 2969
L 2906 3500
L 3481 3500
L 3481 -1331
L 2906 -1331
L 2906 525
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-75" d="M 544 1381
L 544 3500
L 1119 3500
L 1119 1403
Q 1119 906 1312 657
Q 1506 409 1894 409
Q 2359 409 2629 706
Q 2900 1003 2900 1516
L 2900 3500
L 3475 3500
L 3475 0
L 2900 0
L 2900 538
Q 2691 219 2414 64
Q 2138 -91 1772 -91
Q 1169 -91 856 284
Q 544 659 544 1381
z
M 1991 3584
L 1991 3584
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-6e" d="M 3513 2113
L 3513 0
L 2938 0
L 2938 2094
Q 2938 2591 2744 2837
Q 2550 3084 2163 3084
Q 1697 3084 1428 2787
Q 1159 2491 1159 1978
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1366 3272 1645 3428
Q 1925 3584 2291 3584
Q 2894 3584 3203 3211
Q 3513 2838 3513 2113
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-63" d="M 3122 3366
L 3122 2828
Q 2878 2963 2633 3030
Q 2388 3097 2138 3097
Q 1578 3097 1268 2742
Q 959 2388 959 1747
Q 959 1106 1268 751
Q 1578 397 2138 397
Q 2388 397 2633 464
Q 2878 531 3122 666
L 3122 134
Q 2881 22 2623 -34
Q 2366 -91 2075 -91
Q 1284 -91 818 406
Q 353 903 353 1747
Q 353 2603 823 3093
Q 1294 3584 2113 3584
Q 2378 3584 2631 3529
Q 2884 3475 3122 3366
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-79" d="M 2059 -325
Q 1816 -950 1584 -1140
Q 1353 -1331 966 -1331
L 506 -1331
L 506 -850
L 844 -850
Q 1081 -850 1212 -737
Q 1344 -625 1503 -206
L 1606 56
L 191 3500
L 800 3500
L 1894 763
L 2988 3500
L 3597 3500
L 2059 -325
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-20" transform="scale(0.015625)"/>
<path id="DejaVuSans-28" d="M 1984 4856
Q 1566 4138 1362 3434
Q 1159 2731 1159 2009
Q 1159 1288 1364 580
Q 1569 -128 1984 -844
L 1484 -844
Q 1016 -109 783 600
Q 550 1309 550 2009
Q 550 2706 781 3412
Q 1013 4119 1484 4856
L 1984 4856
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-4d" d="M 628 4666
L 1569 4666
L 2759 1491
L 3956 4666
L 4897 4666
L 4897 0
L 4281 0
L 4281 4097
L 3078 897
L 2444 897
L 1241 4097
L 1241 0
L 628 0
L 628 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-48" d="M 628 4666
L 1259 4666
L 1259 2753
L 3553 2753
L 3553 4666
L 4184 4666
L 4184 0
L 3553 0
L 3553 2222
L 1259 2222
L 1259 0
L 628 0
L 628 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-5a" d="M 359 4666
L 4025 4666
L 4025 4184
L 1075 531
L 4097 531
L 4097 0
L 288 0
L 288 481
L 3238 4134
L 359 4134
L 359 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-29" d="M 513 4856
L 1013 4856
Q 1481 4119 1714 3412
Q 1947 2706 1947 2009
Q 1947 1309 1714 600
Q 1481 -109 1013 -844
L 513 -844
Q 928 -128 1133 580
Q 1338 1288 1338 2009
Q 1338 2731 1133 3434
Q 928 4138 513 4856
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-46"/>
<use xlink:href="#DejaVuSans-72" x="50.269531"/>
<use xlink:href="#DejaVuSans-65" x="89.132812"/>
<use xlink:href="#DejaVuSans-71" x="150.65625"/>
<use xlink:href="#DejaVuSans-75" x="214.132812"/>
<use xlink:href="#DejaVuSans-65" x="277.511719"/>
<use xlink:href="#DejaVuSans-6e" x="339.035156"/>
<use xlink:href="#DejaVuSans-63" x="402.414062"/>
<use xlink:href="#DejaVuSans-79" x="457.394531"/>
<use xlink:href="#DejaVuSans-20" x="516.574219"/>
<use xlink:href="#DejaVuSans-28" x="548.361328"/>
<use xlink:href="#DejaVuSans-4d" x="587.375"/>
<use xlink:href="#DejaVuSans-48" x="673.654297"/>
<use xlink:href="#DejaVuSans-5a" x="748.849609"/>
<use xlink:href="#DejaVuSans-29" x="817.355469"/>
</g>
</g>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1">
<g id="line2d_19">
<path d="M 57.6 298.785546
L 414.72 298.785546
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_20">
<defs>
<path id="mf5273a4aa5" d="M 0 0
L -3.5 0
" style="stroke: #000000; stroke-width: 0.8"/>
</defs>
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="298.785546" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_11">
<!-- 15600 -->
<g transform="translate(18.7875 302.584765) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-35" x="63.623047"/>
<use xlink:href="#DejaVuSans-36" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_2">
<g id="line2d_21">
<path d="M 57.6 268.807851
L 414.72 268.807851
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_22">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="268.807851" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_12">
<!-- 15700 -->
<g transform="translate(18.7875 272.60707) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-37" d="M 525 4666
L 3525 4666
L 3525 4397
L 1831 0
L 1172 0
L 2766 4134
L 525 4134
L 525 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-35" x="63.623047"/>
<use xlink:href="#DejaVuSans-37" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_3">
<g id="line2d_23">
<path d="M 57.6 238.830156
L 414.72 238.830156
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_24">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="238.830156" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_13">
<!-- 15800 -->
<g transform="translate(18.7875 242.629375) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-35" x="63.623047"/>
<use xlink:href="#DejaVuSans-38" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_4">
<g id="line2d_25">
<path d="M 57.6 208.852461
L 414.72 208.852461
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_26">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="208.852461" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_14">
<!-- 15900 -->
<g transform="translate(18.7875 212.65168) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-35" x="63.623047"/>
<use xlink:href="#DejaVuSans-39" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_5">
<g id="line2d_27">
<path d="M 57.6 178.874766
L 414.72 178.874766
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_28">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="178.874766" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_15">
<!-- 16000 -->
<g transform="translate(18.7875 182.673985) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_6">
<g id="line2d_29">
<path d="M 57.6 148.897071
L 414.72 148.897071
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_30">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="148.897071" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_16">
<!-- 16100 -->
<g transform="translate(18.7875 152.696289) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-31" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_7">
<g id="line2d_31">
<path d="M 57.6 118.919375
L 414.72 118.919375
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_32">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="118.919375" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_17">
<!-- 16200 -->
<g transform="translate(18.7875 122.718594) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-32" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_8">
<g id="line2d_33">
<path d="M 57.6 88.94168
L 414.72 88.94168
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_34">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="88.94168" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_18">
<!-- 16300 -->
<g transform="translate(18.7875 92.740899) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-33" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="ytick_9">
<g id="line2d_35">
<path d="M 57.6 58.963985
L 414.72 58.963985
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square"/>
</g>
<g id="line2d_36">
<g>
<use xlink:href="#mf5273a4aa5" x="57.6" y="58.963985" style="stroke: #000000; stroke-width: 0.8"/>
</g>
</g>
<g id="text_19">
<!-- 16400 -->
<g transform="translate(18.7875 62.763204) scale(0.1 -0.1)">
<use xlink:href="#DejaVuSans-31"/>
<use xlink:href="#DejaVuSans-36" x="63.623047"/>
<use xlink:href="#DejaVuSans-34" x="127.246094"/>
<use xlink:href="#DejaVuSans-30" x="190.869141"/>
<use xlink:href="#DejaVuSans-30" x="254.492188"/>
</g>
</g>
</g>
<g id="text_20">
<!-- Counts -->
<g transform="translate(12.707812 191.981125) rotate(-90) scale(0.1 -0.1)">
<defs>
<path id="DejaVuSans-43" d="M 4122 4306
L 4122 3641
Q 3803 3938 3442 4084
Q 3081 4231 2675 4231
Q 1875 4231 1450 3742
Q 1025 3253 1025 2328
Q 1025 1406 1450 917
Q 1875 428 2675 428
Q 3081 428 3442 575
Q 3803 722 4122 1019
L 4122 359
Q 3791 134 3420 21
Q 3050 -91 2638 -91
Q 1578 -91 968 557
Q 359 1206 359 2328
Q 359 3453 968 4101
Q 1578 4750 2638 4750
Q 3056 4750 3426 4639
Q 3797 4528 4122 4306
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-6f" d="M 1959 3097
Q 1497 3097 1228 2736
Q 959 2375 959 1747
Q 959 1119 1226 758
Q 1494 397 1959 397
Q 2419 397 2687 759
Q 2956 1122 2956 1747
Q 2956 2369 2687 2733
Q 2419 3097 1959 3097
z
M 1959 3584
Q 2709 3584 3137 3096
Q 3566 2609 3566 1747
Q 3566 888 3137 398
Q 2709 -91 1959 -91
Q 1206 -91 779 398
Q 353 888 353 1747
Q 353 2609 779 3096
Q 1206 3584 1959 3584
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-74" d="M 1172 4494
L 1172 3500
L 2356 3500
L 2356 3053
L 1172 3053
L 1172 1153
Q 1172 725 1289 603
Q 1406 481 1766 481
L 2356 481
L 2356 0
L 1766 0
Q 1100 0 847 248
Q 594 497 594 1153
L 594 3053
L 172 3053
L 172 3500
L 594 3500
L 594 4494
L 1172 4494
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-73" d="M 2834 3397
L 2834 2853
Q 2591 2978 2328 3040
Q 2066 3103 1784 3103
Q 1356 3103 1142 2972
Q 928 2841 928 2578
Q 928 2378 1081 2264
Q 1234 2150 1697 2047
L 1894 2003
Q 2506 1872 2764 1633
Q 3022 1394 3022 966
Q 3022 478 2636 193
Q 2250 -91 1575 -91
Q 1294 -91 989 -36
Q 684 19 347 128
L 347 722
Q 666 556 975 473
Q 1284 391 1588 391
Q 1994 391 2212 530
Q 2431 669 2431 922
Q 2431 1156 2273 1281
Q 2116 1406 1581 1522
L 1381 1569
Q 847 1681 609 1914
Q 372 2147 372 2553
Q 372 3047 722 3315
Q 1072 3584 1716 3584
Q 2034 3584 2315 3537
Q 2597 3491 2834 3397
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-43"/>
<use xlink:href="#DejaVuSans-6f" x="69.824219"/>
<use xlink:href="#DejaVuSans-75" x="131.005859"/>
<use xlink:href="#DejaVuSans-6e" x="194.384766"/>
<use xlink:href="#DejaVuSans-74" x="257.763672"/>
<use xlink:href="#DejaVuSans-73" x="296.972656"/>
</g>
</g>
</g>
<g id="line2d_37">
<path d="M 73.832727 285.895138
L 75.87458 281.998037
L 77.916432 287.394022
L 79.958285 275.103167
L 82.000137 281.69826
L 84.04199 273.604283
L 86.083842 282.897368
L 88.125695 271.505844
L 90.167547 265.810082
L 92.2094 264.910751
L 94.251252 256.217219
L 96.293105 262.212758
L 98.334957 253.21945
L 100.37681 260.11432
L 102.418662 249.921903
L 104.460515 243.926364
L 106.502367 247.823465
L 108.54422 241.528149
L 110.586072 240.628818
L 112.627925 236.431941
L 114.669777 234.933056
L 116.71163 242.42748
L 118.753482 236.431941
L 120.795334 234.333502
L 122.837187 242.127703
L 124.879039 237.331271
L 126.920892 240.928595
L 128.962744 237.930825
L 131.004597 233.434171
L 133.046449 231.035955
L 135.088302 223.241755
L 137.130154 223.541532
L 139.172007 218.145546
L 141.213859 217.246216
L 143.255712 222.042647
L 145.297564 216.646662
L 147.339417 209.751792
L 149.381269 213.049338
L 151.423122 212.449784
L 153.464974 221.443093
L 155.506827 228.63774
L 157.548679 229.537071
L 159.590532 246.024803
L 161.632384 238.530379
L 163.674237 240.928595
L 165.716089 232.834617
L 167.757942 223.241755
L 169.799794 226.539301
L 171.841647 213.349115
L 173.883499 211.550454
L 175.925352 216.047108
L 177.967204 208.852461
L 180.009057 211.550454
L 182.050909 210.9509
L 184.092762 222.941978
L 186.134614 218.145546
L 188.176467 205.554914
L 190.218319 206.154468
L 192.260172 188.767405
L 194.302024 181.872535
L 196.343877 186.968743
L 198.385729 180.973204
L 200.427581 180.973204
L 202.469434 174.378112
L 204.511286 180.973204
L 206.553139 181.272981
L 208.594991 192.664506
L 210.636844 195.662275
L 212.678696 201.957591
L 214.720549 198.660045
L 216.762401 197.760714
L 218.804254 187.568297
L 220.846106 194.762944
L 222.887959 192.064952
L 224.929811 190.865844
L 226.971664 166.284134
L 229.013516 159.689041
L 231.055369 156.991048
L 233.097221 153.393725
L 235.139074 139.304208
L 237.180926 150.695732
L 241.264631 169.281903
L 243.306484 162.986587
L 245.348336 177.675658
L 247.390189 177.076104
L 249.432041 160.588372
L 251.473894 161.487703
L 253.515746 157.590602
L 255.557599 142.301978
L 257.599451 139.304208
L 259.641304 135.407108
L 261.683156 150.995509
L 263.725009 151.89484
L 265.766861 159.389264
L 267.808714 160.588372
L 269.850566 165.384803
L 271.892419 155.192387
L 273.934271 156.991048
L 275.976123 147.99774
L 280.059828 126.713576
L 282.101681 121.917145
L 284.143533 96.136327
L 286.185386 99.733651
L 288.227238 94.337665
L 290.269091 99.134097
L 292.310943 107.228074
L 294.352796 102.73142
L 296.394648 113.223613
L 298.436501 119.518929
L 300.478353 132.709115
L 302.520206 138.704654
L 304.562058 140.203539
L 306.603911 148.297517
L 308.645763 135.706885
L 310.687616 138.1051
L 312.729468 146.798632
L 314.771321 135.107331
L 316.813173 121.317591
L 318.855026 104.829859
L 320.896878 97.934989
L 322.938731 81.14748
L 324.980583 73.653056
L 327.022436 64.35997
L 329.064288 70.055732
L 331.106141 78.749264
L 333.147993 89.541234
L 335.189846 79.348818
L 337.231698 82.346587
L 339.273551 67.957294
L 341.315403 81.747033
L 343.357256 71.854394
L 345.399108 64.959524
L 347.440961 76.950602
L 349.482813 64.060193
L 351.524666 58.064654
L 353.566518 53.568
L 355.60837 62.861086
L 357.650223 54.767108
L 359.692075 64.959524
L 363.77578 77.250379
L 365.817633 89.241457
L 367.859485 90.140788
L 369.901338 78.449487
L 371.94319 87.442796
L 373.985043 89.241457
L 376.026895 93.138558
L 378.068748 94.337665
L 380.1106 93.138558
L 382.152453 100.033428
L 384.194305 100.632981
L 386.236158 94.937219
L 388.27801 104.530082
L 390.319863 101.232535
L 392.361715 108.127405
L 394.403568 106.328743
L 396.44542 103.930528
L 398.487273 118.919375
L 398.487273 118.919375
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #dbad1f; stroke-width: 1.5; stroke-linecap: square"/>
<defs>
<path id="m397154d3c0" d="M 0 1
C 0.265203 1 0.51958 0.894634 0.707107 0.707107
C 0.894634 0.51958 1 0.265203 1 0
C 1 -0.265203 0.894634 -0.51958 0.707107 -0.707107
C 0.51958 -0.894634 0.265203 -1 0 -1
C -0.265203 -1 -0.51958 -0.894634 -0.707107 -0.707107
C -0.894634 -0.51958 -1 -0.265203 -1 0
C -1 0.265203 -0.894634 0.51958 -0.707107 0.707107
C -0.51958 0.894634 -0.265203 1 0 1
z
" style="stroke: #dbad1f"/>
</defs>
<g clip-path="url(#pd8e5b17a01)">
<use xlink:href="#m397154d3c0" x="73.832727" y="285.895138" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="75.87458" y="281.998037" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="77.916432" y="287.394022" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="79.958285" y="275.103167" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="82.000137" y="281.69826" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="84.04199" y="273.604283" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="86.083842" y="282.897368" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="88.125695" y="271.505844" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="90.167547" y="265.810082" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="92.2094" y="264.910751" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="94.251252" y="256.217219" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="96.293105" y="262.212758" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="98.334957" y="253.21945" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="100.37681" y="260.11432" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="102.418662" y="249.921903" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="104.460515" y="243.926364" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="106.502367" y="247.823465" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="108.54422" y="241.528149" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="110.586072" y="240.628818" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="112.627925" y="236.431941" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="114.669777" y="234.933056" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="116.71163" y="242.42748" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="118.753482" y="236.431941" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="120.795334" y="234.333502" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="122.837187" y="242.127703" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="124.879039" y="237.331271" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="126.920892" y="240.928595" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="128.962744" y="237.930825" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="131.004597" y="233.434171" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="133.046449" y="231.035955" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="135.088302" y="223.241755" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="137.130154" y="223.541532" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="139.172007" y="218.145546" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="141.213859" y="217.246216" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="143.255712" y="222.042647" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="145.297564" y="216.646662" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="147.339417" y="209.751792" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="149.381269" y="213.049338" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="151.423122" y="212.449784" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="153.464974" y="221.443093" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="155.506827" y="228.63774" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="157.548679" y="229.537071" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="159.590532" y="246.024803" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="161.632384" y="238.530379" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="163.674237" y="240.928595" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="165.716089" y="232.834617" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="167.757942" y="223.241755" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="169.799794" y="226.539301" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="171.841647" y="213.349115" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="173.883499" y="211.550454" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="175.925352" y="216.047108" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="177.967204" y="208.852461" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="180.009057" y="211.550454" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="182.050909" y="210.9509" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="184.092762" y="222.941978" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="186.134614" y="218.145546" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="188.176467" y="205.554914" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="190.218319" y="206.154468" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="192.260172" y="188.767405" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="194.302024" y="181.872535" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="196.343877" y="186.968743" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="198.385729" y="180.973204" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="200.427581" y="180.973204" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="202.469434" y="174.378112" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="204.511286" y="180.973204" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="206.553139" y="181.272981" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="208.594991" y="192.664506" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="210.636844" y="195.662275" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="212.678696" y="201.957591" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="214.720549" y="198.660045" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="216.762401" y="197.760714" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="218.804254" y="187.568297" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="220.846106" y="194.762944" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="222.887959" y="192.064952" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="224.929811" y="190.865844" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="226.971664" y="166.284134" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="229.013516" y="159.689041" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="231.055369" y="156.991048" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="233.097221" y="153.393725" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="235.139074" y="139.304208" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="237.180926" y="150.695732" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="239.222779" y="159.988818" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="241.264631" y="169.281903" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="243.306484" y="162.986587" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="245.348336" y="177.675658" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="247.390189" y="177.076104" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="249.432041" y="160.588372" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="251.473894" y="161.487703" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="253.515746" y="157.590602" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="255.557599" y="142.301978" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="257.599451" y="139.304208" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="259.641304" y="135.407108" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="261.683156" y="150.995509" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="263.725009" y="151.89484" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="265.766861" y="159.389264" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="267.808714" y="160.588372" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="269.850566" y="165.384803" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="271.892419" y="155.192387" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="273.934271" y="156.991048" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="275.976123" y="147.99774" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="278.017976" y="137.20577" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="280.059828" y="126.713576" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="282.101681" y="121.917145" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="284.143533" y="96.136327" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="286.185386" y="99.733651" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="288.227238" y="94.337665" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="290.269091" y="99.134097" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="292.310943" y="107.228074" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="294.352796" y="102.73142" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="296.394648" y="113.223613" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="298.436501" y="119.518929" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="300.478353" y="132.709115" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="302.520206" y="138.704654" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="304.562058" y="140.203539" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="306.603911" y="148.297517" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="308.645763" y="135.706885" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="310.687616" y="138.1051" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="312.729468" y="146.798632" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="314.771321" y="135.107331" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="316.813173" y="121.317591" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="318.855026" y="104.829859" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="320.896878" y="97.934989" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="322.938731" y="81.14748" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="324.980583" y="73.653056" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="327.022436" y="64.35997" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="329.064288" y="70.055732" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="331.106141" y="78.749264" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="333.147993" y="89.541234" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="335.189846" y="79.348818" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="337.231698" y="82.346587" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="339.273551" y="67.957294" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="341.315403" y="81.747033" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="343.357256" y="71.854394" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="345.399108" y="64.959524" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="347.440961" y="76.950602" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="349.482813" y="64.060193" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="351.524666" y="58.064654" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="353.566518" y="53.568" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="355.60837" y="62.861086" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="357.650223" y="54.767108" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="359.692075" y="64.959524" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="361.733928" y="71.25484" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="363.77578" y="77.250379" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="365.817633" y="89.241457" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="367.859485" y="90.140788" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="369.901338" y="78.449487" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="371.94319" y="87.442796" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="373.985043" y="89.241457" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="376.026895" y="93.138558" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="378.068748" y="94.337665" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="380.1106" y="93.138558" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="382.152453" y="100.033428" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="384.194305" y="100.632981" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="386.236158" y="94.937219" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="388.27801" y="104.530082" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="390.319863" y="101.232535" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="392.361715" y="108.127405" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="394.403568" y="106.328743" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="396.44542" y="103.930528" style="fill: #dbad1f; stroke: #dbad1f"/>
<use xlink:href="#m397154d3c0" x="398.487273" y="118.919375" style="fill: #dbad1f; stroke: #dbad1f"/>
</g>
</g>
<g id="line2d_38">
<path d="M 73.832727 289.492461
L 75.87458 292.790007
L 77.916432 292.790007
L 79.958285 295.488
L 82.000137 292.49023
L 84.04199 289.792238
L 86.083842 294.588669
L 88.125695 288.59313
L 90.167547 287.394022
L 92.2094 282.297814
L 94.251252 274.503613
L 96.293105 280.199375
L 98.334957 272.405175
L 100.37681 273.304506
L 102.418662 266.109859
L 104.460515 263.112089
L 106.502367 267.00919
L 108.54422 255.617665
L 110.586072 262.812312
L 112.627925 249.322349
L 114.669777 247.523688
L 116.71163 257.11655
L 118.753482 261.613204
L 120.795334 254.418558
L 122.837187 260.11432
L 124.879039 252.919673
L 126.920892 251.121011
L 128.962744 252.919673
L 131.004597 256.217219
L 133.046449 246.32458
L 135.088302 243.027033
L 137.130154 246.924134
L 139.172007 234.333502
L 141.213859 235.232833
L 143.255712 226.239524
L 145.297564 226.839078
L 147.339417 219.644431
L 149.381269 230.736178
L 151.423122 230.736178
L 153.464974 245.725026
L 155.506827 244.226141
L 157.548679 254.418558
L 159.590532 250.521457
L 161.632384 257.11655
L 163.674237 243.926364
L 165.716089 249.921903
L 167.757942 252.320119
L 169.799794 234.033725
L 171.841647 223.241755
L 173.883499 227.438632
L 175.925352 221.143316
L 177.967204 231.935286
L 180.009057 240.029264
L 182.050909 236.431941
L 186.134614 234.033725
L 190.218319 219.944208
L 192.260172 213.948669
L 194.302024 214.848
L 196.343877 207.053799
L 198.385729 194.762944
L 200.427581 201.657814
L 202.469434 198.360268
L 204.511286 201.05826
L 206.553139 214.848
L 208.594991 216.346885
L 210.636844 209.452015
L 212.678696 217.246216
L 214.720549 215.147777
L 216.762401 226.239524
L 218.804254 212.449784
L 220.846106 215.147777
L 222.887959 207.053799
L 224.929811 212.150007
L 226.971664 189.966513
L 229.013516 183.071643
L 231.055369 170.780788
L 233.097221 175.277442
L 235.139074 172.279673
L 237.180926 175.277442
L 239.222779 176.47655
L 241.264631 190.566067
L 243.306484 198.060491
L 245.348336 188.167851
L 247.390189 198.959822
L 249.432041 185.769636
L 251.473894 181.272981
L 253.515746 174.378112
L 255.557599 174.378112
L 257.599451 176.47655
L 259.641304 174.977665
L 261.683156 176.47655
L 263.725009 168.382572
L 265.766861 179.174543
L 267.808714 192.064952
L 269.850566 186.069413
L 271.892419 193.563836
L 273.934271 186.36919
L 275.976123 175.277442
L 278.017976 161.187926
L 282.101681 136.006662
L 284.143533 133.908223
L 286.185386 123.41603
L 288.227238 126.114022
L 290.269091 126.114022
L 292.310943 131.510007
L 294.352796 141.10287
L 296.394648 146.199078
L 298.436501 151.595063
L 300.478353 157.890379
L 302.520206 167.483242
L 304.562058 167.183465
L 306.603911 152.794171
L 308.645763 161.187926
L 310.687616 159.389264
L 312.729468 150.096178
L 314.771321 151.595063
L 316.813173 132.109561
L 318.855026 119.518929
L 320.896878 117.120714
L 322.938731 115.322052
L 324.980583 108.726959
L 327.022436 107.527851
L 329.064288 98.534543
L 331.106141 111.125175
L 333.147993 97.335435
L 335.189846 109.026736
L 337.231698 98.234766
L 339.273551 96.436104
L 341.315403 97.635212
L 343.357256 103.031197
L 345.399108 85.943911
L 347.440961 95.536773
L 349.482813 101.232535
L 351.524666 93.438335
L 353.566518 97.035658
L 355.60837 90.740342
L 357.650223 90.440565
L 359.692075 93.438335
L 361.733928 108.427182
L 363.77578 112.024506
L 365.817633 112.324283
L 367.859485 114.722498
L 369.901338 106.328743
L 371.94319 117.120714
L 373.985043 121.017814
L 376.026895 117.420491
L 378.068748 119.219152
L 380.1106 121.317591
L 382.152453 123.116253
L 384.194305 115.022275
L 386.236158 130.011123
L 388.27801 118.619599
L 390.319863 131.21023
L 392.361715 137.20577
L 394.403568 130.011123
L 396.44542 131.510007
L 398.487273 136.306439
L 398.487273 136.306439
" clip-path="url(#pd8e5b17a01)" style="fill: none; stroke: #c213db; stroke-width: 1.5; stroke-linecap: square"/>
<defs>
<path id="mce0b74b661" d="M 0 1
C 0.265203 1 0.51958 0.894634 0.707107 0.707107
C 0.894634 0.51958 1 0.265203 1 0
C 1 -0.265203 0.894634 -0.51958 0.707107 -0.707107
C 0.51958 -0.894634 0.265203 -1 0 -1
C -0.265203 -1 -0.51958 -0.894634 -0.707107 -0.707107
C -0.894634 -0.51958 -1 -0.265203 -1 0
C -1 0.265203 -0.894634 0.51958 -0.707107 0.707107
C -0.51958 0.894634 -0.265203 1 0 1
z
" style="stroke: #c213db"/>
</defs>
<g clip-path="url(#pd8e5b17a01)">
<use xlink:href="#mce0b74b661" x="73.832727" y="289.492461" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="75.87458" y="292.790007" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="77.916432" y="292.790007" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="79.958285" y="295.488" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="82.000137" y="292.49023" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="84.04199" y="289.792238" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="86.083842" y="294.588669" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="88.125695" y="288.59313" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="90.167547" y="287.394022" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="92.2094" y="282.297814" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="94.251252" y="274.503613" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="96.293105" y="280.199375" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="98.334957" y="272.405175" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="100.37681" y="273.304506" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="102.418662" y="266.109859" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="104.460515" y="263.112089" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="106.502367" y="267.00919" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="108.54422" y="255.617665" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="110.586072" y="262.812312" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="112.627925" y="249.322349" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="114.669777" y="247.523688" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="116.71163" y="257.11655" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="118.753482" y="261.613204" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="120.795334" y="254.418558" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="122.837187" y="260.11432" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="124.879039" y="252.919673" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="126.920892" y="251.121011" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="128.962744" y="252.919673" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="131.004597" y="256.217219" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="133.046449" y="246.32458" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="135.088302" y="243.027033" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="137.130154" y="246.924134" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="139.172007" y="234.333502" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="141.213859" y="235.232833" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="143.255712" y="226.239524" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="145.297564" y="226.839078" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="147.339417" y="219.644431" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="149.381269" y="230.736178" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="151.423122" y="230.736178" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="153.464974" y="245.725026" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="155.506827" y="244.226141" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="157.548679" y="254.418558" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="159.590532" y="250.521457" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="161.632384" y="257.11655" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="163.674237" y="243.926364" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="165.716089" y="249.921903" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="167.757942" y="252.320119" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="169.799794" y="234.033725" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="171.841647" y="223.241755" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="173.883499" y="227.438632" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="175.925352" y="221.143316" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="177.967204" y="231.935286" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="180.009057" y="240.029264" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="182.050909" y="236.431941" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="184.092762" y="235.232833" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="186.134614" y="234.033725" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="188.176467" y="226.839078" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="190.218319" y="219.944208" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="192.260172" y="213.948669" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="194.302024" y="214.848" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="196.343877" y="207.053799" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="198.385729" y="194.762944" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="200.427581" y="201.657814" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="202.469434" y="198.360268" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="204.511286" y="201.05826" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="206.553139" y="214.848" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="208.594991" y="216.346885" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="210.636844" y="209.452015" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="212.678696" y="217.246216" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="214.720549" y="215.147777" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="216.762401" y="226.239524" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="218.804254" y="212.449784" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="220.846106" y="215.147777" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="222.887959" y="207.053799" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="224.929811" y="212.150007" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="226.971664" y="189.966513" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="229.013516" y="183.071643" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="231.055369" y="170.780788" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="233.097221" y="175.277442" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="235.139074" y="172.279673" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="237.180926" y="175.277442" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="239.222779" y="176.47655" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="241.264631" y="190.566067" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="243.306484" y="198.060491" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="245.348336" y="188.167851" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="247.390189" y="198.959822" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="249.432041" y="185.769636" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="251.473894" y="181.272981" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="253.515746" y="174.378112" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="255.557599" y="174.378112" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="257.599451" y="176.47655" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="259.641304" y="174.977665" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="261.683156" y="176.47655" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="263.725009" y="168.382572" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="265.766861" y="179.174543" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="267.808714" y="192.064952" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="269.850566" y="186.069413" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="271.892419" y="193.563836" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="273.934271" y="186.36919" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="275.976123" y="175.277442" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="278.017976" y="161.187926" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="280.059828" y="148.297517" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="282.101681" y="136.006662" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="284.143533" y="133.908223" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="286.185386" y="123.41603" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="288.227238" y="126.114022" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="290.269091" y="126.114022" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="292.310943" y="131.510007" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="294.352796" y="141.10287" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="296.394648" y="146.199078" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="298.436501" y="151.595063" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="300.478353" y="157.890379" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="302.520206" y="167.483242" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="304.562058" y="167.183465" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="306.603911" y="152.794171" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="308.645763" y="161.187926" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="310.687616" y="159.389264" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="312.729468" y="150.096178" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="314.771321" y="151.595063" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="316.813173" y="132.109561" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="318.855026" y="119.518929" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="320.896878" y="117.120714" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="322.938731" y="115.322052" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="324.980583" y="108.726959" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="327.022436" y="107.527851" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="329.064288" y="98.534543" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="331.106141" y="111.125175" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="333.147993" y="97.335435" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="335.189846" y="109.026736" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="337.231698" y="98.234766" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="339.273551" y="96.436104" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="341.315403" y="97.635212" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="343.357256" y="103.031197" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="345.399108" y="85.943911" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="347.440961" y="95.536773" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="349.482813" y="101.232535" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="351.524666" y="93.438335" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="353.566518" y="97.035658" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="355.60837" y="90.740342" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="357.650223" y="90.440565" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="359.692075" y="93.438335" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="361.733928" y="108.427182" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="363.77578" y="112.024506" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="365.817633" y="112.324283" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="367.859485" y="114.722498" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="369.901338" y="106.328743" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="371.94319" y="117.120714" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="373.985043" y="121.017814" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="376.026895" y="117.420491" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="378.068748" y="119.219152" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="380.1106" y="121.317591" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="382.152453" y="123.116253" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="384.194305" y="115.022275" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="386.236158" y="130.011123" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="388.27801" y="118.619599" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="390.319863" y="131.21023" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="392.361715" y="137.20577" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="394.403568" y="130.011123" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="396.44542" y="131.510007" style="fill: #c213db; stroke: #c213db"/>
<use xlink:href="#mce0b74b661" x="398.487273" y="136.306439" style="fill: #c213db; stroke: #c213db"/>
</g>
</g>
<g id="patch_3">
<path d="M 57.6 307.584
L 57.6 41.472
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_4">
<path d="M 414.72 307.584
L 414.72 41.472
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_5">
<path d="M 57.6 307.584
L 414.72 307.584
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_6">
<path d="M 57.6 41.472
L 414.72 41.472
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="legend_1">
<g id="patch_7">
<path d="M 403.72 54.472
L 407.72 54.472
Q 409.72 54.472 409.72 52.472
L 409.72 48.472
Q 409.72 46.472 407.72 46.472
L 403.72 46.472
Q 401.72 46.472 401.72 48.472
L 401.72 52.472
Q 401.72 54.472 403.72 54.472
z
" style="fill: #ffffff; opacity: 0.8; stroke: #cccccc; stroke-linejoin: miter"/>
</g>
</g>
</g>
</g>
<defs>
<clipPath id="pd8e5b17a01">
<rect x="57.6" y="41.472" width="357.12" height="266.112"/>
</clipPath>
</defs>
</svg>
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
#os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230424_CPT_TemperatureSens/Data/')
os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20230920_CPT_TemperatureSens_v2/Data/')
CPT_FILES = """000011345-IR_Scan_withcal_optimized
000011331-IR_Scan_withcal_optimized
"""
HEATING_FILES = """
"""
CPT_FILES = ''
for i in range(0,9):
CPT_FILES = CPT_FILES + f'0000153{19 + i}-IR_Scan_withcal_optimized\n'
CPT_FILES = CPT_FILES
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#print(SeeKeys(HEATING_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Counts_heating = []
HeatTimes = []
AmpTisa_heating = []
UVCPTAmp_heating = []
No_measures_heating = []
Freqs_heating = []
#%%
for i, fname in enumerate(HEATING_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
HeatTimes.append(np.array(data['datasets']['t_heating']))
Freqs_heating.append(np.array(data['datasets']['IR1_Frequencies']))
Counts_heating.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp_heating.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures_heating.append(np.array(data['datasets']['no_measures']))
#%%
"""
Ploteo las cpt de referencia / plotting the reference CPT
"""
jvec = [0,8]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j])
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
#%%
from EITfit.threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
from EITfit.threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
from scipy.optimize import curve_fit
"""
Ajusto un cpt para obtener todos los parámetros relevantes primero.
I fit a cpt curve to retrieve all the relevant parameters first.
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
noiseamplitude = 0
T = 0.6e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 33.5e6
c=3e8
B = (u/(2*np.pi))/c
correccion = 6 #con 3 fitea bien
offsetxpi = 440+1+correccion
DetDoppler = -12-correccion
FreqsCPT = [2*f*1e-6-offsetxpi+14 for f in Freqs[0]]
CountsCPT = Counts[0]
freqslongCPT = np.arange(min(FreqsCPT), max(FreqsCPT)+FreqsCPT[1]-FreqsCPT[0], 0.1*(FreqsCPT[1]-FreqsCPT[0]))
#[1.71811842e+04 3.34325038e-17]
def FitEIT(freqs, SG, SP, scale, offset, temp):
#temp = 2.9e-4
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#scale = 2.85164232e+04
#offset = 2.16392191e+03
FinalFluo = [f*scale + offset for f in MeasuredFluo]
return FinalFluo
popt_fullcpt_noheat, pcov_fullcpt_noheat = curve_fit(FitEIT, FreqsCPT, CountsCPT, p0=[0.5, 4.5, 1e4, 1e3, 1e-3], bounds=((0, 0, 0, 0, 0), (2, 10, 1e5, 1e5, 10e-3)))
print(f'Temperatura: ({round(1e3*popt_fullcpt_noheat[-1],2)} +- {round(1e3*np.sqrt(pcov_fullcpt_noheat[-1][-1]),2)}) mK')
print(popt_fullcpt_noheat)
FittedEIT = FitEIT(freqslongCPT, *popt_fullcpt_noheat)
#%%
"""
Ploteo la CPT de referencia junto al ajuste
I plot the reference CPT along with the fit to the model
"""
plt.figure()
plt.errorbar(FreqsCPT, CountsCPT, yerr=2*np.sqrt(CountsCPT), fmt='o', capsize=2, markersize=2)
plt.plot(freqslongCPT, FittedEIT)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
HeatTimes = [0,1,2,3,4]
#plt.figure()
for j in [0,1,2,3,4]:
plt.errorbar([2*f*1e-6-offsetxpi+14 for f in Freqs_heating[j]], Counts_heating[j], yerr=0.0*np.sqrt(Counts_heating[j]), fmt='-', capsize=2, markersize=2, label=f'Heating time {HeatTimes[j]} ms')
plt.legend()
plt.xlim(-25,10)
#%%
#Ahora lo mismo con otro set de mediciones
from EITfit.threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
from EITfit.threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
from scipy.optimize import curve_fit
"""
Ajusto un cpt para obtener todos los parámetros relevantes primero.
I fit a cpt curve to retrieve all the relevant parameters first.
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
noiseamplitude = 0
T = 0.6e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 33.5e6
c=3e8
B = (u/(2*np.pi))/c
correccion = 6 #con 3 fitea bien
offsetxpi = 440+1+correccion
DetDoppler = -12-correccion
FreqsCPT = [2*f*1e-6-offsetxpi+14 for f in Freqs[1]]
CountsCPT = Counts[1]
freqslongCPT = np.arange(min(FreqsCPT), max(FreqsCPT)+FreqsCPT[1]-FreqsCPT[0], 0.1*(FreqsCPT[1]-FreqsCPT[0]))
#[1.71811842e+04 3.34325038e-17]
def FitEIT(freqs, SG, SP, scale, offset, temp):
#temp = 2.9e-4
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#scale = 2.85164232e+04
#offset = 2.16392191e+03
FinalFluo = [f*scale + offset for f in MeasuredFluo]
return FinalFluo
popt_fullcpt_noheat, pcov_fullcpt_noheat = curve_fit(FitEIT, FreqsCPT, CountsCPT, p0=[0.5, 4.5, 1e4, 1e3, 1e-3], bounds=((0, 0, 0, 0, 0), (2, 10, 1e5, 1e5, 10e-3)))
print(f'Temperatura: ({round(1e3*popt_fullcpt_noheat[-1],2)} +- {round(1e3*np.sqrt(pcov_fullcpt_noheat[-1][-1]),2)}) mK')
print(popt_fullcpt_noheat)
FittedEIT = FitEIT(freqslongCPT, *popt_fullcpt_noheat)
#%%
"""
Simulo CPTs con todos esos parámetros para distintas temperaturas
I simulate CPT curves with all the previous parameters but with varying temperatures
"""
TempVecTeorico = list(np.arange(0.3,1,0.1))+list(np.arange(1, 31, 1))
CurvasTeoricas = []
for tempi in TempVecTeorico:
CurvasTeoricas.append(FitEITpi(freqslongpi, *popt_fullcpt[:-1], tempi*1e-3))
#%%
"""
Acá agarro la primera y busco el valor i_DR que corresponde a la resonancia oscura de interés
With the first one, I look for the value i_DR which corresponds to the dark resonance of interest
"""
curva_ref = CurvasTeoricas[0]
i_DR = 955
plt.figure()
plt.plot(freqslongpi, curva_ref)
plt.plot(freqslongpi[i_DR], curva_ref[i_DR],'o')
#%%
"""
ploteo algunos CPTs teoricos para algunas temperaturas
Plotting some theory cpt curves for some temperatures
"""
plt.plot(freqslongpi, CurvasTeoricas[0])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[0][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[10])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[10][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[20])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[20][i_DR],'o',markersize=10)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Fluorescence')
plt.grid()
#%%
"""
Ahora interpolo los valores teóricos de las profundidades de esas resonancias
y aplico la interpolación a las mediciones para obtener temperaturas.
Luego, grafico las temperaturas en función de los tiempos de calentamiento.
Now I interpolate the theoretical values of the depths of those resonances
and apply the interpolation to the measurements to obtain temperatures.
After that, I plot the temperatures with respect to the heating times
"""
from scipy.interpolate import interp1d
FluosDRTeo = [CurvasTeoricas[k][i_DR] for k in range(len(CurvasTeoricas))]
interpolado = interp1d(FluosDRTeo, TempVecTeorico) #creo funcion que interpola
meas = 0
maxi = 9 #valor maximo, dsp el ion se calento
Heating_tim = Times[meas][:maxi]
Heating_tim_ms = [t*1e3 for t in Heating_tim]
Heating_med = [2*c for c in Counts_heating[meas][:maxi]]
ErrorHeating_med = [2*np.sqrt(c) for c in Counts_heating[meas][:maxi]]
Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med]
Error_Temperaturas_interpoladas = [float(interpolado(Heating_med[k]+0.5*ErrorHeating_med[k]))-Temperaturas_interpoladas[k] for k in range(len(Heating_med))]
plt.figure()
plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange')
plt.plot(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000), interpolado(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000)))
plt.xlabel('Cuentas de DR teoricas')
plt.ylabel('Temperatura (mK)')
plt.figure()
#plt.plot(Heating_med, Heating_tim, 'o', color='blue')
plt.errorbar([t*1e3 for t in Heating_tim], Heating_med, yerr=ErrorHeating_med, fmt='o', capsize=2, markersize=5)
plt.ylabel('Cuentas de DR medidas')
plt.xlabel('Heating time (s)')
def lineal(x,a,b):
return a*x+b
#p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas, sigma=Error_Temperaturas_interpoladas)
p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas)
#%%
"""
Grafico finalmente el plot del heating rate de la trampa
Finally I plot the heating rate of the trap
"""
plt.figure()
#plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o')
plt.errorbar(Heating_tim_ms,Temperaturas_interpoladas, yerr=np.array(Error_Temperaturas_interpoladas), fmt='o', capsize=2, markersize=7, color='black')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1), color='red')
plt.xlabel('Heating time (ms)', fontname='STIXGeneral', fontsize=15)
plt.ylabel('Temperature (mK)', fontname='STIXGeneral', fontsize=15)
plt.grid()
plt.xticks([0, 5, 10, 15, 20 ,25, 30, 35], fontname='STIXGeneral', fontsize=15)
plt.yticks([0, 5, 10, 15], fontname='STIXGeneral', fontsize=15)
plt.title(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms', fontname='STIXGeneral', fontsize=15)
plt.tight_layout()
plt.savefig('Fig_heatingrate.svg')
print(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')
#%%
"""
Ahora voy a ver CPT enteras con tiempos de calentamiento distintos.
Now I see whole CPT curves with different heating times
"""
jvec = [3, 4]
plt.figure()
i = 0
for j in jvec:
if j==4:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==3:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='5 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()
jvec = [1, 2]
plt.figure()
i = 0
for j in jvec:
if j==2:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==1:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='1 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()
#%%
"""
La siguiente curva probablemente no este bien medida ya que inmediatamente
despues, los laseres se deslockearon. La dejo por las dudas.
This curve is probably not well measured...
"""
jvec = [5, 6]
plt.figure()
i = 0
for j in jvec:
if j==6:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
elif j==5:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='10 ms heating')
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,3900)
plt.grid()
plt.legend()
plt.title('Ojo: medicion condicionada por derivas')
#%%
"""
Ahora ploteo 6 curvas cpt para distintos valores de potencia del UV
This is a plot of 6 different cpt curves for 6 different UV powers. I should fit them
to obtain saturation parameters
"""
jvec = [7,8,9,10,11,12]
plt.figure()
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
#plt.ylim(1000,2900)
plt.grid()
#plt.legend()
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 2 16:30:09 2020
@author: oem
"""
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
import MM_eightLevel_2repumps_python_scripts
from MM_eightLevel_2repumps_python_scripts import CPTspectrum8levels,CPTspectrum8levels_vel
from scipy.optimize import curve_fit
import random
from scipy.signal import savgol_filter as sf
def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None):
"""
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe, beta, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
#print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
return ProbeDetuningVectorL, Fluovector
def PerformExperiment_8levels_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None):
"""
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe, beta, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
#print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
return ProbeDetuningVectorL, Fluovector
def GenerateNoisyCPT(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, kg, kr, v0, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, kg, kr, v0, drivefreq, freqMin, freqMax, freqStep, circularityprobe, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, drivefreq,beta, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe = circularityprobe, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
def fitCPT_8levels_db(Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False):
def SpectrumForFit(Freq,sg,sp,T,DetDoppler):
freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None)
return spectra
popt,pcov = curve_fit(SpectrumForFit,Freq,Fluo,p0 = [sg,sp,T,DetDoppler],bounds = ([0.01,0.01,0.00001,-50e6],[1,20,1,30e6]))
fitted_spectra = SpectrumForFit(Freq,*popt)
return Freq, fitted_spectra,popt,pcov
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 1 17:58:39 2020
@author: nico
"""
import os
import numpy as np
from MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels, GenerateNoisyCPT_vel, SmoothNoisyCPT, PerformExperiment_8levels_vel,fitCPT_8levels_db
import matplotlib.pyplot as plt
import time
import h5py
def MB_prob(vel,T):
return (m/(2*np.pi*kboltz*T))**(3/2)*2* vel**2 *np.exp(-vel**2 * m/(2*kboltz*T))
def MB_prob_1d(vel,T):
return np.sqrt(m/(2*np.pi*kboltz*T))*np.exp(-vel**2 * m/(2*kboltz*T))
#plt.rcParams.update({
# "text.usetex": True,
# "font.family": "CM Roman"
#})
plt.rcParams["axes.prop_cycle"] = plt.cycler('color', ['#DBAD1F', '#C213DB', '#DB4F2A', '#0500DB', '#09DB9B', '#B4001B', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])
ub = 9.27e-24 #magneton de bohr
h = 6.63e-34 #cte de planck
c = (ub/h)*1e-4 #en unidades de MHz/G
kboltz = 1.380649e-23
m = 6.6551079e-26
u = 32e6 #esto equivale aprox al campo que tenemos
B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1 #ancho de linea de los laseres en MHz
DopplerLaserLinewidth, ProbeLaserLinewidth = lw, lw #ancho de linea de los laseres
DetDoppler = -15 #detuning doppler en MHz
T = 0.1e-3 #temperatura en K
alpha = 0 #angulo entre los láseres
#estos son los angulos de la polarizacion de los laseres respecto al campo magnetico
phidoppler, titadoppler = 0, 90
titaprobe = 90
phiprobe = 0
#este es el desfasaje exp(i.phi) de la componente de la polarizacion y respecto a la x. Con 1 la polarizacion es lineal
CircPr = 1
#Parametros de la simulacion cpt todo en MHz
center = -15
span = 30
freqMin = center-span*0.5
freqMax = center+span*0.5
freqStep = 0.5
print(freqMin,freqMax,freqStep)
noiseamplitude = 0
#parametros de saturacion de los laseres. g: doppler. p: probe (un rebombeo que scanea), r: repump (otro rebombeo fijo)
sg = 0.3
sp = 3
drivefreq=2*np.pi*22.135*1e6
kg = np.pi * 2/397 *1e9
kp = np.pi * 2/866 *1e9
#betavec = np.arange(0,1.1,0.1)
betavec=[0]
#fig1, ax1 = plt.subplots()
FrequenciesVec = []
FluorescencesVec = []
alphavec = [0]
Tvec = np.linspace(0.5e-3,100e-3,15)
#Tvec = np.linspace(0.001,0.1,20)
s12vec = np.linspace(0.2,0.6,20)
#s12vec = [s12vec[2],s12vec[4],s12vec[10],s12vec[18]]
s12vec = [0.28]
s23vec = np.linspace(0.5,15,20)
#s23vec = [s23vec[2],s23vec[6],s23vec[10],s23vec[18]]
s23vec = [10]
Tmat = np.zeros((len(s12vec),len(s23vec)))
Tvec_ajuste = np.zeros(len(Tvec))
phivect = 0
titavect = np.linspace(0,2*np.pi,100)
beta = 0
alpha = 0
for l in range(len(Tvec)):
for i in range(len(s12vec)):
for j in range(len(s23vec)):
#print(i,j)
sg = s12vec[i]
sp = s23vec[j]
T = Tvec[l]
velvect = np.linspace(-4 * np.sqrt(kboltz*T/m),4 * np.sqrt(kboltz*T/m),100)
MB_prob_vec = np.array(MB_prob_1d(velvect,T))
freq, Fluo = GenerateNoisyCPT_vel(velvect,titavect,phivect,MB_prob_vec,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta,drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001)
plt.show()
plt.figure()
a = plt.plot(freq,Fluo,'.',label = 'T = {:.1f} mK'.format(T*1000))
freq, Fluo_doppler,popt,pcov = fitCPT_8levels_db(freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta,drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False)
Tmat[i,j] = popt[2]
plt.plot(freq,Fluo_doppler,'-')
plt.grid()
plt.legend()
plt.xlabel(' Detuning repump (MHz)')
plt.ylabel('Fluorescence')
plt.title('s12 = {:.2f} s23 = {:.2f} T = {:.1f} mK Det = {:.1f}\n s12 = {:.2f} s23 = {:.2f} T = {:.1f} mK Det = {:.1f}'.format(sg,sp,T*1000,DetDoppler,popt[0],popt[1],popt[2]*1000,popt[3]/1e6))
plt.savefig('ajuste_espectros_s12_{:.2f}_s23_{:.2f}_T_{:.0f}_mK_gamma_un_cuarto.png'.format(sg,sp,T*1000))
'''
fig2,ax2 = plt.subplots()
im = ax2.imshow(diferencias.T*100,extent = (s12vec[0],s12vec[-1],s23vec[0],s23vec[-1]),origin = 'lower',aspect = 'auto')
#plt.xlabel('Detuning repump (MHz)')
#plt.ylabel('Fluorescence (A.U.)')
plt.colorbar(im,ax = ax2,label = 'Porcentaje diferencia' )
ax2.set_title('T = {:} mK'.format(1000*T))
ax2.set_xlabel('s12')
ax2.set_ylabel('s23')
fig2.savefig('mapa_comparacion_T_{:.2f}_gamma_un_cuarto.png'.format(T*1000))
'''
np.save('mapa_estimacion_T_{:.2f}_gamma_un_cuarto'.format(T*1000))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 7 22:30:01 2020
@author: nico
"""
#ESTE CODIGO ES EL PRINCIPAL PARA PLOTEAR CPT TEORICOS
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
"""
Scripts para el calculo de la curva CPT
"""
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5, Detp-2*u/5, Detp+2*u/5, Detp+6*u/5) #pagina 26 de Oberst. los lande del calcio son iguales a Bario.
H0 = np.diag(eigenEnergies)
return H0
def H0matrix_vel(vel,tita,phi,Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
kg = 2*np.pi/397 *1e9
kg = 2*np.pi/397 *1e9 * np.array([1,1,10])/np.sqrt(1+1+10**2)
kp = 2*np.pi/866 *1e9
kp = 2*np.pi/866 *1e9 * np.array([1,1,10])/np.sqrt(1+1+10**2)
Detg = Detg - np.dot(kg,vel)
Detp = Detp - np.dot(kp,vel) #ira con un (+) acá?
eigenEnergies = (Detg -u, Detg +u, -u/3, u/3, Detp-6*u/5, Detp-2*u/5, Detp+2*u/5, Detp+6*u/5) #pagina 26 de Oberst. los lande del calcio son iguales a Bario.
H0 = np.diag(eigenEnergies)
return H0
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe=1):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de la transición Doppler SP,
rabP es la frecuencia de rabi de la transición repump DP, y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*(np.cos(phiprobe)-1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*(np.cos(phiprobe)+1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*(np.cos(phiprobe)-1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*(np.cos(phiprobe)+1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
def LtempCalculus(beta, drivefreq, forma=1):
Hint = np.zeros((8, 8), dtype=np.complex_)
ampg=beta*drivefreq
ampr=beta*drivefreq
Hint[0,0] = ampg
Hint[1,1] = ampg
Hint[4,4] = ampr
Hint[5,5] = ampr
Hint[6,6] = ampr
Hint[7,7] = ampr
if forma==1:
Ltemp = np.zeros((64, 64), dtype=np.complex_)
"""
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
Ltemp[r*8+q][k*8+j] = (-1j)*(Hint[r,k]*int(j==q) - Hint[j,q]*int(r==k))
"""
"""
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if r==k and j==q:
Ltemp[r*8+q][k*8+j] = (-1j)*(Hint[r,k] - Hint[j,q])
"""
for r in range(8):
for q in range(8):
if r!=q:
Ltemp[r*8+q][r*8+q] = (-1j)*(Hint[r,r] - Hint[q,q])
if forma==2:
deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
Ltemp = (-1j)*(np.kron(Hint, deltaKro) - np.kron(deltaKro, Hint))
Omega = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
Omega[i, i] = (1j)*drivefreq
return np.matrix(Ltemp), np.matrix(Omega)
def GetL1(Ltemp, L0, Omega, nmax):
"""
Devuelve Splus0 y Sminus0
"""
Sp = (-1)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*Omega))*0.5*np.matrix(Ltemp))
Sm = (-1)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*Omega))*0.5*np.matrix(Ltemp))
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
Sp = (-1)*(np.matrix(np.linalg.inv(L0 - n*Omega + (0.5*Ltemp*np.matrix(Sp))))*0.5*np.matrix(Ltemp))
Sm = (-1)*(np.matrix(np.linalg.inv(L0 + n*Omega + (0.5*Ltemp*np.matrix(Sm))))*0.5*np.matrix(Ltemp))
L1 = 0.5*np.matrix(Ltemp)*(np.matrix(Sp) + np.matrix(Sm))
return L1
def EffectiveL(gPS, gPD, lwg, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*lwp
Leff[5, 5] = 2*lwp
Leff[6, 6] = 2*lwp
Leff[7, 7] = 2*lwp
return (-0.5j)*Leff
def CalculateSingleMmatrix(gPS, gPD, lwg, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M = np.matrix(np.zeros((64, 64), dtype=np.complex_))
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
#M[36, 45] = lwp
for k in [36, 37, 38, 39, 44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63]:
M[k,k]=2*lwp
return M
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, beta=0, drivefreq=2*np.pi*22.135*1e6, T = 0, alpha = 0, circularityprobe=1):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + (db/2)**2)/2
lwp = np.sqrt(lwp**2 + (db/2)**2)/2
#lwp = np.sqrt(lwp**2 )
CC = EffectiveL(gPS, gPD, lwg, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe) + CC
Heffdaga = np.matrix(Heff).getH()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M)
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 7
#print(nmax)
Ltemp, Omega = LtempCalculus(beta, drivefreq)
#print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
#HASTA ACA
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
def FullLvel(vel,tita,phi,rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, beta=0, drivefreq=2*np.pi*22.135*1e6, T = 0, alpha = 0, circularityprobe=1):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + db**2)
lwp = np.sqrt(lwp**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwp)
Heff = H0matrix_vel(vel,tita,phi,Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe) + CC
Heffdaga = np.matrix(Heff).getH()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M)
"""
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 7
#print(nmax)
Ltemp, Omega = LtempCalculus(beta, drivefreq)
#print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
#HASTA ACA
"""
Lfull = L0
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, detpvec = None,plot=False, solvemode=1):
"""
ESTA ES LA FUNCION QUE ESTAMOS USANDO
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
if detpvec == None:
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
else:
DetProbeVector = detpvec*1e6 * 2*np.pi
Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwp = lwg*1e6, lwp*1e6
rabG = sg*gPS
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL(rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
def CPTspectrum8levels_vel(velvect,titavec,phivec,probvel,sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
ESTA ES LA FUNCION QUE ESTAMOS USANDO
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwp = lwg*1e6, lwp*1e6
rabG = sg*gPS
rabP = sp*gPD
#u = 2*np.pi*u*1e6
kg = 2*np.pi/397 *1e9
kp = 2*np.pi/866 *1e9
Fluovector = []
phi = 0
tinicial = time.time()
r = 0
tita = 0
for Detp in DetProbeVector:
#Fluovector_vel = np.zeros((len(velvect),len(titavec)))
Fluovector_vel = np.zeros(len(velvect))
l = 0
for velx in velvect:
L = FullL(rabG, rabP, gPS, gPD, Detg -kg*velx, Detp - kp*velx, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
Fluovector_vel[l] = Fluo
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector_vel[l] = Fluo
l = l + 1
'''
for tita in titavec:
L = FullLvel(vel,tita,phi,rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
Fluovector_vel[l,j] = Fluo
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector_vel[l,j] = Fluo
j = j + 1
'''
'''
vel,tita = np.meshgrid(velvect,titavec)
vel = np.matrix(vel)
tita = np.matrix(tita)
#print(titavec[-1])
L = FullLvel(vel,tita,phi,rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
print('muri')
if solvemode == 1:
print('termino todos los full L')
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
Fluovector_vel = Fluo
print('calculo el fluo')
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector_vel = Fluo
'''
#Fluovector_vel = np.array(Fluovector_vel)
#velvect = np.array(velvect)
#velvect_mod = velvect[:,0] *np.sqrt(3)
Fluo = np.trapz(Fluovector_vel*np.array(probvel),x = velvect,axis = 0)
#Fluo = np.trapz(Fluo*1/(2*np.pi),x = titavec)
'''
L = FullLvel(vel,rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluo_y = np.trapz(Fluo*probvel),x = velvect[0][0,:,0],axis = 1)
Fluo_xy = np.trapz(Fluo_y),x = velvect[1][:,0,0],axis = 0)
Fluo = np.trapz(Fluo_xy),x = velvect[2][0,0,:],axis = 2)
'''
Fluovector.append(Fluo)
r = r+1
#print(fr'{r/len(DetProbeVector)*100:.0f} %')
tfinal = time.time()
#print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
Frequencyvector, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 2 16:30:09 2020
@author: oem
"""
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
from EITfit.threeLevel_2repumps_linealpol_python_scripts import CPTspectrum8levels, CPTspectrum8levels_fixedRabi
import random
from scipy.signal import savgol_filter as sf
def CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
else:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return [detuningdoppler + dr for dr in NegativeDR], [detuningrepump + dr for dr in PositiveDR]
def GetClosestIndex(Vector, value, tolerance=1e-3):
i = 0
while i<len(Vector):
if abs(Vector[i] - value) < tolerance:
return i
else:
i = i + 1
return GetClosestIndex(Vector, value, tolerance=2*tolerance)
def FindDRFrequencies(Freq, Fluo, TeoDR, entorno=3):
"""
Busca los indices y la frecuencia de los minimos en un entorno cercano al de la DR.
Si no encuentra, devuelve el valor teórico.
"""
IndiceDRteo1, IndiceEntornoinicialDRteo1, IndiceEntornofinalDRteo1 = GetClosestIndex(Freq, TeoDR[0]), GetClosestIndex(Freq, TeoDR[0]-entorno), GetClosestIndex(Freq, TeoDR[0]+entorno)
IndiceDRteo2, IndiceEntornoinicialDRteo2, IndiceEntornofinalDRteo2 = GetClosestIndex(Freq, TeoDR[1]), GetClosestIndex(Freq, TeoDR[1]-entorno), GetClosestIndex(Freq, TeoDR[1]+entorno)
IndiceDRteo3, IndiceEntornoinicialDRteo3, IndiceEntornofinalDRteo3 = GetClosestIndex(Freq, TeoDR[2]), GetClosestIndex(Freq, TeoDR[2]-entorno), GetClosestIndex(Freq, TeoDR[2]+entorno)
IndiceDRteo4, IndiceEntornoinicialDRteo4, IndiceEntornofinalDRteo4 = GetClosestIndex(Freq, TeoDR[3]), GetClosestIndex(Freq, TeoDR[3]-entorno), GetClosestIndex(Freq, TeoDR[3]+entorno)
IndiceDRteo5, IndiceEntornoinicialDRteo5, IndiceEntornofinalDRteo5 = GetClosestIndex(Freq, TeoDR[4]), GetClosestIndex(Freq, TeoDR[4]-entorno), GetClosestIndex(Freq, TeoDR[4]+entorno)
IndiceDRteo6, IndiceEntornoinicialDRteo6, IndiceEntornofinalDRteo6 = GetClosestIndex(Freq, TeoDR[5]), GetClosestIndex(Freq, TeoDR[5]-entorno), GetClosestIndex(Freq, TeoDR[5]+entorno)
EntornoFreqDR1, EntornoFreqDR2 = Freq[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Freq[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFreqDR3, EntornoFreqDR4 = Freq[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Freq[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFreqDR5, EntornoFreqDR6 = Freq[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Freq[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
EntornoFluoDR1, EntornoFluoDR2 = Fluo[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Fluo[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFluoDR3, EntornoFluoDR4 = Fluo[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Fluo[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFluoDR5, EntornoFluoDR6 = Fluo[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Fluo[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
IndiceFluoMinimaEntorno1, IndiceFluoMinimaEntorno2 = argrelextrema(np.array(EntornoFluoDR1), np.less)[0], argrelextrema(np.array(EntornoFluoDR2), np.less)[0]
IndiceFluoMinimaEntorno3, IndiceFluoMinimaEntorno4 = argrelextrema(np.array(EntornoFluoDR3), np.less)[0], argrelextrema(np.array(EntornoFluoDR4), np.less)[0]
IndiceFluoMinimaEntorno5, IndiceFluoMinimaEntorno6 = argrelextrema(np.array(EntornoFluoDR5), np.less)[0], argrelextrema(np.array(EntornoFluoDR6), np.less)[0]
try:
FreqDR1 = EntornoFreqDR1[int(IndiceFluoMinimaEntorno1)]
IndiceDR1 = GetClosestIndex(Freq, FreqDR1)
except:
FreqDR1 = TeoDR[0]
IndiceDR1 = IndiceDRteo1
try:
FreqDR2 = EntornoFreqDR2[int(IndiceFluoMinimaEntorno2)]
IndiceDR2 = GetClosestIndex(Freq, FreqDR2)
except:
FreqDR2 = TeoDR[1]
IndiceDR2 = IndiceDRteo2
try:
FreqDR3 = EntornoFreqDR3[int(IndiceFluoMinimaEntorno3)]
IndiceDR3 = GetClosestIndex(Freq, FreqDR3)
except:
FreqDR3 = TeoDR[2]
IndiceDR3 = IndiceDRteo3
try:
FreqDR4 = EntornoFreqDR4[int(IndiceFluoMinimaEntorno4)]
IndiceDR4 = GetClosestIndex(Freq, FreqDR4)
except:
FreqDR4 = TeoDR[3]
IndiceDR4 = IndiceDRteo4
try:
FreqDR5 = EntornoFreqDR5[int(IndiceFluoMinimaEntorno5)]
IndiceDR5 = GetClosestIndex(Freq, FreqDR5)
except:
FreqDR5 = TeoDR[4]
IndiceDR5 = IndiceDRteo5
try:
FreqDR6 = EntornoFreqDR6[int(IndiceFluoMinimaEntorno6)]
IndiceDR6 = GetClosestIndex(Freq, FreqDR6)
except:
FreqDR6 = TeoDR[5]
IndiceDR6 = IndiceDRteo6
return [IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6], [FreqDR1, FreqDR2, FreqDR3, FreqDR4, FreqDR5, FreqDR6]
def FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=-100, getindices=False):
"""
Toma los indices donde estan las DR y evalua su fluorescencia. Esos indices son minimos locales en un entorno
cercano a las DR teoricas y, si no hay ningun minimo, toma la teorica.
Luego, hace el cociente de esa fluorescencia y un factor de normalización segun NormalizationCriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
4: Deuelve el cociente entre la fluorescencia del minimo y el valor de fluorescencia a detuning 0 MHz
"""
IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6 = IndicesDR[0], IndicesDR[1], IndicesDR[2], IndicesDR[3], IndicesDR[4], IndicesDR[5]
FluorescenceOfMinimums = [Fluo[IndiceDR1], Fluo[IndiceDR2], Fluo[IndiceDR3], Fluo[IndiceDR4], Fluo[IndiceDR5], Fluo[IndiceDR6]]
FrequencyOfMinimums = [Freq[IndiceDR1], Freq[IndiceDR2], Freq[IndiceDR3], Freq[IndiceDR4], Freq[IndiceDR5], Freq[IndiceDR6]]
DistanciaFrecuenciaCociente = 25
if NormalizationCriterium==0:
print('che')
return FrequencyOfMinimums, FluorescenceOfMinimums
if NormalizationCriterium==1:
Fluorescenciacerodetuning = Fluo[GetClosestIndex(Freq, 0)]
Fluorescenciaasintotica = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
return FrequencyOfMinimums, np.array([Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica])
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
indiceizquierda = k
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
indicederecha = l
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
#asintotico
FluoNormDivisor = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
if NormalizationCriterium==4:
#este te tira la fluorescencia de detuning 0
FluoNormDivisor = Fluo[GetClosestIndex(Freq, 0)]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
print('Esto: ', RelativeFluorescenceOfMinimums)
if NormalizationCriterium==2 and getindices==True:
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums, indiceizquierda, indicederecha
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetFinalMaps(MapasDR1, MapasDR2, MapasDR3, MapasDR4, MapasDR5, MapasDR6):
"""
Nota: esto vale para polarizacion del 397 sigma+ + sigma-. Sino hay que cambiar los coeficientes.
La estructura es:
MapasDRi = [MapaMedido_criterio1_DRi, MapaMedido_criterio2_DRi, MapaMedido_criterio3_DRi, MapaMedido_criterio4_DRi]
"""
Mapa1 = MapasDR1[0]
Mapa2pi = np.sqrt(3)*(MapasDR2[1] + MapasDR5[1])
Mapa2smas = np.sqrt(12/2)*MapasDR3[1] + (2/np.sqrt(2))*MapasDR6[1]
Mapa2smenos = (2/np.sqrt(2))*MapasDR1[1] + np.sqrt(12/2)*MapasDR4[1]
Mapa3pi = np.sqrt(3)*(MapasDR2[2] + MapasDR5[2])
Mapa3smas = np.sqrt(12/2)*MapasDR3[2] + (2/np.sqrt(2))*MapasDR6[2]
Mapa3smenos = (2/np.sqrt(2))*MapasDR1[2] + np.sqrt(12/2)*MapasDR4[2]
return Mapa1, [Mapa2pi, Mapa2smas, Mapa2smenos], [Mapa3pi, Mapa3smas, Mapa3smenos]
def CombinateDRwithCG(RelMinMedido1, RelMinMedido2, RelMinMedido3, RelMinMedido4):
Fluo1 = RelMinMedido1[0]
Fluo2pi = np.sqrt(3)*(RelMinMedido2[1] + RelMinMedido2[4])
Fluo2smas = np.sqrt(12/2)*RelMinMedido2[2] + (2/np.sqrt(2))*RelMinMedido2[5]
Fluo2smenos = (2/np.sqrt(2))*RelMinMedido2[0] + np.sqrt(12/2)*RelMinMedido2[3]
Fluo3pi = np.sqrt(3)*(RelMinMedido3[1] + RelMinMedido3[4])
Fluo3smas = np.sqrt(12/2)*RelMinMedido3[2] + (2/np.sqrt(2))*RelMinMedido3[5]
Fluo3smenos = (2/np.sqrt(2))*RelMinMedido3[0] + np.sqrt(12/2)*RelMinMedido3[3]
return Fluo1, [Fluo2pi, Fluo2smas, Fluo2smenos], [Fluo3pi, Fluo3smas, Fluo3smenos]
def IdentifyPolarizationCoincidences(theoricalmap, target, tolerance=1e-1):
"""
Busca en un mapa 2D la presencia de un valor target (medido) con tolerancia tolerance.
Si lo encuentra, pone un 1. Sino, un 0. Al plotear con pcolor se verá
en blanco la zona donde el valor medido se puede hallar.
"""
CoincidenceMatrix = np.zeros((len(theoricalmap), len(theoricalmap[0])))
i = 0
while i<len(theoricalmap):
j = 0
while j<len(theoricalmap[0]):
if abs(theoricalmap[i][j]-target) < tolerance:
CoincidenceMatrix[i][j] = 1
j=j+1
i=i+1
return CoincidenceMatrix
def RetrieveAbsoluteCoincidencesBetweenMaps(MapsVectors):
MatrixSum = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
AbsoluteCoincidencesMatrix = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
MatrixMapsVectors = []
for i in range(len(MapsVectors)):
MatrixMapsVectors.append(np.matrix(MapsVectors[i]))
for i in range(len(MatrixMapsVectors)):
MatrixSum = MatrixSum + MatrixMapsVectors[i]
MaxNumberOfCoincidences = np.max(MatrixSum)
ListMatrixSum = [list(i) for i in list(np.array(MatrixSum))]
for i in range(len(ListMatrixSum)):
for j in range(len(ListMatrixSum[0])):
if ListMatrixSum[i][j] == MaxNumberOfCoincidences:
AbsoluteCoincidencesMatrix[i][j] = 1
return AbsoluteCoincidencesMatrix, MaxNumberOfCoincidences
def MeasureMeanValueOfEstimatedArea(AbsoluteCoincidencesMap, X, Y):
NonZeroIndices = np.nonzero(AbsoluteCoincidencesMap)
Xsum = 0
Xvec = []
Ysum = 0
Yvec = []
N = len(NonZeroIndices[0])
for i in range(N):
Xsum = Xsum + X[NonZeroIndices[1][i]]
Xvec.append(X[NonZeroIndices[1][i]])
Ysum = Ysum + Y[NonZeroIndices[0][i]]
Yvec.append(Y[NonZeroIndices[0][i]])
Xaverage = Xsum/N
Yaverage = Ysum/N
Xspread = np.std(Xvec)
Yspread = np.std(Yvec)
return Xaverage, Yaverage, N, Xspread, Yspread
def MeasureRelativeFluorescenceFromCPT(Freq, Fluo, u, titadoppler, detuningrepump, detuningdoppler, frefasint=-100, entorno=3):
ResonanciasTeoricas, ResonanciasPositivas = CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)
IndicesDR, FreqsDR = FindDRFrequencies(Freq, Fluo, ResonanciasTeoricas, entorno=entorno)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums0 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=0, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums1 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums2, indiceizquierda, indicederecha = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=2, frecuenciareferenciacriterioasintotico=frefasint, getindices=True)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums3 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=3, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums4 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=4, frecuenciareferenciacriterioasintotico=frefasint)
print('hola')
print(RelativeFluorescenceOfMinimums0)
return RelativeFluorescenceOfMinimums0, RelativeFluorescenceOfMinimums1, RelativeFluorescenceOfMinimums2, RelativeFluorescenceOfMinimums3, RelativeFluorescenceOfMinimums4, IndicesDR, [indiceizquierda, indicederecha]
def GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fit(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, min(freqs), max(freqs) + freqs[1]-freqs[0], freqs[1]-freqs[0], plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def AddNoiseToCPT(Fluo, noisefactor):
return [f+noisefactor*(2*random.random()-1) for f in Fluo]
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
def GetMinimaInfo(Freq, Fluo, u, titadoppler, detuningdoppler, detuningrepump, MinimumCriterium=2, NormalizationCriterium=1):
"""
FUNCION VIEJA
Esta funcion devuelve valores de frecuencias y fluorescencia relativa de los minimos.
Minimumcriterion:
1: Saca los minimos con funcion argelextrema
2: Directamente con las frecuencias teoricas busca las fluorescencias
Normalizationcriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
"""
FluorescenceOfMaximum = max(Fluo)
FrequencyOfMaximum = Freq[Fluo.index(FluorescenceOfMaximum)]
#criterio para encontrar los minimos
#criterio usando minimos de la fluorescencia calculados con la curva
if MinimumCriterium == 1:
LocationOfMinimums = argrelextrema(np.array(Fluo), np.less)[0]
FluorescenceOfMinimums = np.array([Fluo[i] for i in LocationOfMinimums])
FrequencyOfMinimums = np.array([Freq[j] for j in LocationOfMinimums])
#criterio con las DR teoricas
if MinimumCriterium == 2:
FrecuenciasDRTeoricas, FrecuenciasDRTeoricasPositivas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
FrequencyOfMinimums = []
FluorescenceOfMinimums =[]
print(FrecuenciasDRTeoricas)
k=0
ventanita = 0.001
while k < len(Freq):
if Freq[k] < FrecuenciasDRTeoricas[0] + ventanita and Freq[k] > FrecuenciasDRTeoricas[0] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[1] + ventanita and Freq[k] > FrecuenciasDRTeoricas[1] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[2] + ventanita and Freq[k] > FrecuenciasDRTeoricas[2] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[3] + ventanita and Freq[k] > FrecuenciasDRTeoricas[3] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[4] + ventanita and Freq[k] > FrecuenciasDRTeoricas[4] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[5] + ventanita and Freq[k] > FrecuenciasDRTeoricas[5] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
k = k + 1
print(FrequencyOfMinimums)
if len(FrequencyOfMinimums) != len(FrecuenciasDRTeoricas):
print('NO ANDA BIEN ESTO PAPI, revisalo')
#esto es para establecer un criterio para la fluorescencia relativa
DistanciaFrecuenciaCociente = 15
if NormalizationCriterium==1:
FluoNormDivisor = 1
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
FluoNormDivisor = Fluo[0]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetPlotsofFluovsAngle_8levels(FrequencyOfMinimumsVector, RelativeFluorescenceOfMinimumsVector, u, titadoppler, detuningdoppler, detuningrepump, ventana=0.25, taketheoricalDR=False):
#primero buscamos las frecuencias referencia que se parezcan a las 6:
i = 0
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[0]
FrecuenciasDRTeoricas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
while i < len(FrequencyOfMinimumsVector):
if len(FrequencyOfMinimumsVector[i])==len(FrecuenciasDRTeoricas):
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[i]
print('Cool! Taking the DR identified with any curve')
break
else:
i = i + 1
if i==len(FrequencyOfMinimumsVector):
print('No hay ningun plot con 5 resonancias oscuras. Tomo las teóricas')
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
if taketheoricalDR:
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
Ventana = abs(ventana*(FrecuenciasReferenciaBase[1] - FrecuenciasReferenciaBase[0])) #ventana separadora de resonancias
print('Ventana = ', Ventana)
DarkResonance1Frequency = []
DarkResonance1Fluorescence = []
DarkResonance2Frequency = []
DarkResonance2Fluorescence = []
DarkResonance3Frequency = []
DarkResonance3Fluorescence = []
DarkResonance4Frequency = []
DarkResonance4Fluorescence = []
DarkResonance5Frequency = []
DarkResonance5Fluorescence = []
DarkResonance6Frequency = []
DarkResonance6Fluorescence = []
i = 0
while i < len(FrequencyOfMinimumsVector):
j = 0
FrecuenciasReferencia = [i for i in FrecuenciasReferenciaBase]
while j < len(FrequencyOfMinimumsVector[i]):
if abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[0])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[0])-Ventana):
DarkResonance1Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance1Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[0] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[1])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[1])-Ventana):
DarkResonance2Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance2Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[1] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[2])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[2])-Ventana):
DarkResonance3Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance3Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[2] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[3])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[3])-Ventana):
DarkResonance4Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance4Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[3] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[4])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[4])-Ventana):
DarkResonance5Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance5Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[4] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[5])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[5])-Ventana):
DarkResonance6Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance6Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[5] = 0
else:
#print('Algo anduvo mal, por ahi tenes que cambiar la ventana che')
pass
j = j + 1
if np.count_nonzero(FrecuenciasReferencia) > 0:
if FrecuenciasReferencia[0] != 0:
DarkResonance1Frequency.append(FrecuenciasReferencia[0])
DarkResonance1Fluorescence.append()
if FrecuenciasReferencia[1] != 0:
DarkResonance2Frequency.append(FrecuenciasReferencia[1])
DarkResonance2Fluorescence.append(0)
if FrecuenciasReferencia[2] != 0:
DarkResonance3Frequency.append(FrecuenciasReferencia[2])
DarkResonance3Fluorescence.append(0)
if FrecuenciasReferencia[3] != 0:
DarkResonance4Frequency.append(FrecuenciasReferencia[3])
DarkResonance4Fluorescence.append(0)
if FrecuenciasReferencia[4] != 0:
DarkResonance5Frequency.append(FrecuenciasReferencia[4])
DarkResonance5Fluorescence.append(0)
if FrecuenciasReferencia[5] != 0:
DarkResonance6Frequency.append(FrecuenciasReferencia[5])
DarkResonance6Fluorescence.append(0)
i = i + 1
return DarkResonance1Frequency, DarkResonance1Fluorescence, DarkResonance2Frequency, DarkResonance2Fluorescence, DarkResonance3Frequency, DarkResonance3Fluorescence, DarkResonance4Frequency, DarkResonance4Fluorescence, DarkResonance5Frequency, DarkResonance5Fluorescence, DarkResonance6Frequency, DarkResonance6Fluorescence, FrecuenciasReferenciaBase
def PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
def PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 1 17:58:39 2020
@author: oem
"""
import os
import numpy as np
#os.chdir('/home/oem/Nextcloud/G_liaf/liaf-TrampaAnular/Código General/EIT-CPT/Buenos Aires/Experiment Simulations/CPT scripts/Eight Level 2 repumps')
from threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
import matplotlib.pyplot as plt
import time
from threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
#C:\Users\Usuario\Nextcloud\G_liaf\liaf-TrampaAnular\Código General\EIT-CPT\Buenos Aires\Experiment Simulations\CPT scripts\Eight Level 2 repumps
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
#u = 1e6
u = 33.5e6
B = (u/(2*np.pi))/c
#sg, sp = 0.6, 5 #parámetros de control, saturación del doppler y repump
#rabG, rabP = sg*gPS, sp*gPD #frecuencias de rabi
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
DetDoppler = -36 #42
DetRepumpVec = [DetDoppler+29.6]
Tvec = [0.7] #temperatura en mK
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
#Calculo las resonancias oscuras teóricas
#ResonanciasTeoricas, DRPositivas = CalculoTeoricoDarkResonances_8levels(u/(2*np.pi*1e6), titadoppler, DetDoppler, DetRepump)
#Parametros de la simulacion cpt
center = -45
span = 80
freqMin = center-span*0.5
freqMax = center+span*0.5
""" parametros para tener espectros coherentes
freqMin = -56
freqMax = 14
"""
freqStep = 1e-1
noiseamplitude = 0
RelMinMedido0Vector = []
RelMinMedido1Vector = []
RelMinMedido2Vector = []
RelMinMedido3Vector = []
RelMinMedido4Vector = []
#Sr = np.arange(0, 10, 0.2)
#Sg = np.arange(0.01, 1, 0.05)
#Sp = np.arange(0.1, 6.1, 1)
#Sg = [0.6**2]
#Sp = [2.3**2]
Sg = [1.4]
Sp = [6]
Sr = [11]
i = 0
save = False
showFigures = True
if not showFigures:
plt.ioff()
else:
plt.ion()
fig1, ax1 = plt.subplots()
offsetx = 464
ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o')
run = True
Scale = 730
Offset = 600 #600 para 20k cuentas aprox
MaxCoherenceValue = []
for sg in Sg:
for sp in Sp:
rabG, rabP = sg*gPS, sp*gPD
for Ti in Tvec:
T = Ti*1e-3
for DetRepump in DetRepumpVec:
print(T)
for sr in Sr:
rabR = sr*gPD
#MeasuredFreq, MeasuredFluo = GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
if run:
MeasuredFreq4, MeasuredFluo4 = GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#SmoothFluo = SmoothNoisyCPT(MeasuredFluo, window=9, poly=2)
SmoothFluo4 = MeasuredFluo4
#Scale = max(BestC)/max([100*s for s in SmoothFluo4])
ax1.plot(MeasuredFreq4, [Scale*100*f + Offset for f in SmoothFluo4], label=f'Sr = {sr}')
ax1.axvline(DetDoppler, linestyle='--', linewidth=1)
#if sr != 0:
#ax1.axvline(DetRepump, linestyle='--', linewidth=1)
MaxCoherenceValue.append(np.max(SmoothFluo4))
#print(titaprobe)
ax1.set_xlabel('Detuning Rebombeo (MHz)')
ax1.set_ylabel('Fluorescencia (AU)')
ax1.set_title(f'B: {round(B, 2)} G, Sdop: {round(sg, 2)}, Sp: {round(sp, 2)}, Sr: {round(sr, 2)}, lw: {lw} MHz, T: {Ti} mK')
#ax1.set_ylim(0, 8)
#ax1.axvline(DetDoppler, linestyle='dashed', color='red', linewidth=1)
#ax1.axvline(DetRepump, linestyle='dashed', color='black', linewidth=1)
#ax1.set_title('Pol Doppler y Repump: Sigma+ Sigma-, Pol Probe: PI')
#ax1.legend()
ax1.grid()
print (f'{i+1}/{len(Sg)*len(Sp)}')
i = i + 1
if save:
plt.savefig(f'Mapa_plots_100k_1mk/CPT_SMSM_sdop{round(sg, 2)}_sp{round(sp, 2)}_sr{round(sr, 2)}.jpg')
ax1.legend()
"""
plt.figure()
plt.plot(Sr, MaxCoherenceValue, 'o')
plt.xlabel('Sr')
plt.ylabel('Coherence')
"""
"""
plt.figure()
plt.plot(MeasuredFreq, [100*f for f in SmoothFluo], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.4, 1.8, 0.2))
plt.ylim(0.5, 1.6)
plt.grid()
plt.figure()
plt.plot(MeasuredFreq4, [100*f for f in SmoothFluo4], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.8, 2.4, 0.4))
plt.grid()
"""
#%%
from scipy.optimize import curve_fit
T = 0.5e-3
sg = 0.7
sp = 6
sr = 0
DetDoppler = -14
DetRepump = 0
FitsSp = []
FitsOffset = []
Sg = [0.87]
def FitEIT(freqs, SP, offset):
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(0.87, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
FinalFluo = [f*43000 + 2685 for f in MeasuredFluo]
return FinalFluo
freqs = [f-offsetx+32 for f in FreqsDR]
freqslong = np.arange(min(freqs), max(freqs)+freqs[1]-freqs[0], 0.1*(freqs[1]-freqs[0]))
popt, pcov = curve_fit(FitEIT, freqs, CountsDR, p0=[5, 700], bounds=(0, [10, 1e6]))
FitsSp.append(popt[0])
FitsOffset.append(popt[1])
print(popt)
FittedEIT = FitEIT(freqslong, *popt)
plt.figure()
plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', capsize=2, markersize=2)
plt.plot(freqslong, FitEIT(freqslong, *popt))
plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {T*1e3} mK, detDop: {DetDoppler} MHz')
np.savetxt('CPT_measured.txt', np.transpose([freqs, CountsDR]))
np.savetxt('CPT_fitted.txt', np.transpose([freqslong, FittedEIT]))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 7 22:30:01 2020
@author: nico
"""
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
"""
Scripts para el calculo de la curva CPT
"""
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5, Detp-2*u/5, Detp+2*u/5, Detp+6*u/5) #pagina 26 de Oberst. los lande del calcio son iguales a Bario.
H0 = np.diag(eigenEnergies)
return H0
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de la transición Doppler SP,
rabP es la frecuencia de rabi de la transición repump DP, y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
def Lplusminus(detr, detp, phirepump, titarepump, forma=1):
Hintplus = np.zeros((8, 8), dtype=np.complex_)
Hintminus = np.zeros((8, 8), dtype=np.complex_)
Hintplus[4, 2] = (-1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[5, 2] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[6, 2] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintplus[5, 3] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[6, 3] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[7, 3] = (1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 4] = (-1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 5] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[2, 6] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintminus[3, 5] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[3, 6] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[3, 7] = (1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
if forma==1:
Lplus = np.zeros((64, 64), dtype=np.complex_)
Lminus = np.zeros((64, 64), dtype=np.complex_)
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j==q:
if (k==2 or k==3) and r > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(Hintplus[r,k])
if (r==2 or r==3) and k > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(Hintminus[r,k])
elif r==k:
if (q==2 or q==3) and j > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(- Hintplus[j,q])
if (j==2 or j==3) and q > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(- Hintminus[j,q])
if forma==2:
deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
Lplus = (-1j)*(np.kron(Hintplus, deltaKro) - np.kron(deltaKro, Hintplus))
Lminus = (-1j)*(np.kron(Hintminus, deltaKro) - np.kron(deltaKro, Hintminus))
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
DeltaBar[i, i] = (1j)*(detr - detp)
return np.matrix(Lminus), np.matrix(Lplus), np.matrix(DeltaBar)
def GetL1(Lplus, Lminus, DeltaBar, L0, rabR, nmax):
"""
Devuelve Splus0 y Sminus0
"""
Sp = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*DeltaBar))*np.matrix(Lplus))
Sm = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*DeltaBar))*np.matrix(Lminus))
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
Sp = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 - n*DeltaBar + rabR*(Lminus*np.matrix(Sp))))*np.matrix(Lplus))
Sm = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 + n*DeltaBar + rabR*(Lplus*np.matrix(Sm))))*np.matrix(Lminus))
L1 = 0.5*rabR*(np.matrix(Lminus)*np.matrix(Sp) + np.matrix(Lplus)*np.matrix(Sm))
return L1
def EffectiveL(gPS, gPD, lwg, lwr, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*(lwr + lwp)
Leff[5, 5] = 2*(lwr + lwp)
Leff[6, 6] = 2*(lwr + lwp)
Leff[7, 7] = 2*(lwr + lwp)
return (-0.5j)*Leff
def CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M = np.matrix(np.zeros((64, 64), dtype=np.complex_))
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
factor1 = 1
factor2 = 1
factor3 = 1
factor4 = 1
#M[36, 45] = lwp
M[36,36] = 2*(lwr + factor1*lwp)
M[37,37] = 2*(lwr + factor1*lwp)
M[38,38] = 2*(lwr + factor1*lwp)
M[39,39] = 2*(lwr + factor1*lwp)
M[44,44] = 2*(lwr + factor2*lwp)
M[45,45] = 2*(lwr + factor2*lwp)
M[46,46] = 2*(lwr + factor2*lwp)
M[47,47] = 2*(lwr + factor2*lwp)
M[52,52] = 2*(lwr + factor3*lwp)
M[53,53] = 2*(lwr + factor3*lwp)
M[54,54] = 2*(lwr + factor3*lwp)
M[55,55] = 2*(lwr + factor3*lwp)
M[60,60] = 2*(lwr + factor4*lwp)
M[61,61] = 2*(lwr + factor4*lwp)
M[62,62] = 2*(lwr + factor4*lwp)
M[63,63] = 2*(lwr + factor4*lwp)
return M
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
def FullL_efficient(rabG, rabR, rabP, gPS = 0, gPD = 0, Detg = 0, Detr = 0, Detp = 0, u = 0, lwg = 0, lwr=0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, phirepump=0, titarepump=0, T = 0, alpha = 0):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
#lwr = np.sqrt(lwr**2 + dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)**2)
lwg = np.sqrt(lwg**2 + db**2)
lwr = np.sqrt(lwr**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwr, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe) + CC
Heffdaga = np.matrix(Heff).getH()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M)
nmax = 1
Lminus, Lplus, DeltaBar = Lplusminus(Detr, Detp, phirepump, titarepump)
factor1 = np.exp(1j*0.2*np.pi)
factor2 = np.exp(-1j*0.2*np.pi)
#print(factor)
L1 = GetL1(factor1*Lplus, factor2*Lminus, DeltaBar, L0, rabR, nmax)
Lfull = L0 + L1
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
def CalculoTeoricoDarkResonances(u, titadoppler):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return NegativeDR, PositiveDR
def CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
def CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwr, lwp = lwg*1e6, lwr*1e6, lwp*1e6
rabG = sg*gPS
rabR = sr*gPD
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
coh = 5
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
#Fluo = np.abs(rhovectorized[coh])
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
#%%
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
Frequencyvector, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
NegativeDR, PositiveDR = CalculoTeoricoDarkResonances(u/(2*np.pi*1e6), titadoppler)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
for PDR in PositiveDR:
plt.axvline(Detr+PDR, linestyle='--', linewidth=0.5, color='red')
for NDR in NegativeDR:
plt.axvline(Detg+NDR, linestyle='--', linewidth=0.5, color='blue')
#parametros que andan piola:
"""
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 17 #campo magnetico en gauss
u = c*B
#u = 80e6
sr, sp = 0.53, 4.2
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
rabR, rabP = sr*gPS, sp*gPD
lw = 2*np.pi * 0.33e6
lwr, lwp = lw, lw #ancho de linea de los laseres
dr_spec = - 2*np.pi* 26e6
freqSteps = 500
freqMin = -100e6
freqMax = 100e6
dps = 2*np.pi*np.linspace(freqMin, freqMax, freqSteps)
#dps = [-30e6]
alfar = 90*(np.pi/180)
ex_r, ey_r, ez_r = np.sin(alfar)*np.cos(0), np.sin(alfar)*np.sin(0), np.cos(alfar)
alfap = 90*(np.pi/180)
ex_p, ey_p, ez_p = np.sin(alfap)*np.cos(0), np.sin(alfap)*np.sin(0), np.cos(alfap)
"""
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment