Commit 78bc9727 authored by Marcelo Luda's avatar Marcelo Luda

scripts marce

parent 4733fe7b
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
20 de dic 2023
@author: lolo
reingenieria del código que anda
MAPA de FUNCIONES
CPTspectrum8levels_MM
|--> FullL_MM => ndarray(64,64,np.complex_)
|--> dopplerBroadening => float
|--> EffectiveL => ndarray(8,8,np.complex_)
|--> H0matrix => ndarray(8,8,np.complex_)
|--> HImatrix => ndarray(8,8,np.complex_)
|--> CalculateSingleMmatrix => ndarray(64,64,np.complex_)
|--> LtempCalculus => ndarray,ndarray
|--> GetL1 => ndarray
"""
# pylint: disable=C0301,R0913,R0914,W0621
import time
import random
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter as sf
from numba import jit,njit
@njit
def PerformExperiment_8levels_MM(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None):
"""
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
rta = CPTspectrum8levels_MM(sg, sp, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
T, alpha, phidoppler, titadoppler, phiprobe,
titaprobe, circularityprobe, beta, drivefreq,
freqMin=freqMin, freqMax=freqMax, freqStep=freqStep,
plot=False, solvemode=1)
ProbeDetuningVectorL, Fluovector = rta
return ProbeDetuningVectorL, Fluovector
def GenerateNoisyCPT_MM(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, kg, kr, v0, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
"""
Genera un resultado de PerformExperiment_8levels_MM con ruido normal agregado
"""
nFrequencyvector, Fluovector = PerformExperiment_8levels_MM(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, kg, kr, v0, drivefreq, freqMin, freqMax, freqStep, circularityprobe, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return nFrequencyvector, NoisyFluovector
def GenerateNoisyCPT_MM_fit(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, beta, drivefreq, freqs, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
"""
Este no se qué hace
"""
Frequencyvector, Fluovector = PerformExperiment_8levels_MM(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, beta, drivefreq, freqs[0], freqs[-1], freqs[1]-freqs[0], circularityprobe, plot=False, solvemode=1, detpvec=None)
#NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, Fluovector
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
#%% Estos son los auxiliares ###################################################
"""
Esta parte es la del modelo
"""
@njit
def make_diag(vec):
"Construye matris diagonal desde una lista o vector"
return np.eye(len(vec))*np.array(vec).reshape(-1,1)
# @njit
# def kron(a,b):
# "Hago el producto de Kronecker a mano"
# return np.vstack( [ np.hstack( [ a[k,j]*b for j in range(a.shape[1]) ] ) for k in range(a.shape[0])])
# @njit
# def kron(A, B):
# cola = A.shape[1]
# rowa = A.shape[0]
# colb = B.shape[1]
# rowb = B.shape[0]
#
# C = [[0] * (cola * colb) for _ in range(rowa * rowb) ]
#
# for i in range(rowa):
# for k in range(cola):
# for j in range(rowb):
# for l in range(colb):
# C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]
# return np.array(C)
import numba
@jit
def kron(A,B):
out=np.empty((A.shape[0],B.shape[0],A.shape[1],B.shape[1]),dtype=A.dtype)
for i in numba.prange(A.shape[0]):
for j in range(B.shape[0]):
for k in range(A.shape[1]):
for l in range(B.shape[1]):
out[i,j,k,l]=A[i,k]*B[j,l]
return out
@njit
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning
del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5,
Detp-2*u/5, Detp+2*u/5, Detp+6*u/5)
#pagina 26 de Oberst. los lande del calcio son iguales a Bario.
# H0 = np.diag(eigenEnergies)
# H0 = np.eye(len(eigenEnergies))*np.array(eigenEnergies).reshape(-1,1)
H0 = make_diag(eigenEnergies)
return H0
@njit
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe=1):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de
la transición Doppler SP, rabP es la frecuencia de rabi de la transición repump DP,
y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben
estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*(np.cos(phiprobe)-1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*(np.cos(phiprobe)+1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*(np.cos(phiprobe)-1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*(np.cos(phiprobe)+1j*np.sin(phiprobe)*circularityprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
# @jit
# def LtempCalculus(beta:float, drivefreq:float, forma=1):
# Hint = np.zeros((8, 8), dtype=np.complex_)
# ampg=beta*drivefreq
# ampr=beta*drivefreq*(397/866)
# Hint[0,0] = ampg
# Hint[1,1] = ampg
# Hint[4,4] = ampr
# Hint[5,5] = ampr
# Hint[6,6] = ampr
# Hint[7,7] = ampr
# if forma==1:
# Ltemp = np.zeros((64, 64), dtype=np.complex_)
# for r in range(8):
# for q in range(8):
# if r!=q:
# Ltemp[r*8+q][r*8+q] = (-1j)*(Hint[r,r] - Hint[q,q])
# if forma==2:
# # deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
# deltaKro = make_diag([1., 1., 1., 1., 1., 1., 1., 1.]).astype(np.complex_)
# # Ltemp = (-1j)*(np.kron(Hint, deltaKro) - np.kron(deltaKro, Hint))
# Ltemp = (-1j)*(kron(Hint, deltaKro) - kron(deltaKro, Hint))
# Omega = np.zeros((64, 64), dtype=np.complex_)
# for i in range(64):
# Omega[i, i] = (1j)*drivefreq
# return Ltemp, Omega
@njit
def LtempCalculus(beta:float, drivefreq:float, forma=1):
Hint = np.zeros((8, 8), dtype=np.complex_)
ampg=beta*drivefreq
ampr=beta*drivefreq*(397/866)
Hint[0,0] = ampg
Hint[1,1] = ampg
Hint[4,4] = ampr
Hint[5,5] = ampr
Hint[6,6] = ampr
Hint[7,7] = ampr
Ltemp = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
if r!=q:
Ltemp[r*8+q][r*8+q] = (-1j)*(Hint[r,r] - Hint[q,q])
Omega = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
Omega[i, i] = (1j)*drivefreq
return Ltemp, Omega
# LtempCalculus(0,1)
# raise ValueError('aaa')
@njit
def GetL1(Ltemp, L0, Omega, nmax):
"""
Devuelve Splus0 y Sminus0
"""
# Sp = (-1)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*Omega))*0.5*np.matrix(Ltemp))
# Sm = (-1)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*Omega))*0.5*np.matrix(Ltemp))
Sp = (-1)*np.linalg.inv(L0 - (nmax+1)*Omega).dot(0.5*Ltemp)
Sm = (-1)*np.linalg.inv(L0 + (nmax+1)*Omega).dot(0.5*Ltemp)
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
# Sp = (-1)*(np.matrix(np.linalg.inv(L0 - n*Omega + (0.5*Ltemp*np.matrix(Sp))))*0.5*np.matrix(Ltemp))
# Sm = (-1)*(np.matrix(np.linalg.inv(L0 + n*Omega + (0.5*Ltemp*np.matrix(Sm))))*0.5*np.matrix(Ltemp))
Sp = (-1)*np.linalg.inv(L0 - n*Omega + (0.5*Ltemp.dot(Sp))).dot(0.5*Ltemp)
Sm = (-1)*np.linalg.inv(L0 + n*Omega + (0.5*Ltemp.dot(Sm))).dot(0.5*Ltemp)
# L1 = 0.5*np.matrix(Ltemp)*(np.matrix(Sp) + np.matrix(Sm))
L1 = 0.5*Ltemp.dot(Sp + Sm)
return L1
@njit
def EffectiveL(gPS, gPD, lwg, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*lwp
Leff[5, 5] = 2*lwp
Leff[6, 6] = 2*lwp
Leff[7, 7] = 2*lwp
return (-0.5j)*Leff
@njit
def CalculateSingleMmatrix(gPS, gPD, lwg, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M = np.zeros((64, 64), dtype=np.complex_)
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
for k in [36, 37, 38, 39, 44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63]:
M[k,k]=2*lwp
return M
@njit
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
@njit
def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, beta=0,
drivefreq=2*np.pi*22.135*1e6, T = 0, alpha = 0, circularityprobe=1):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + db**2)
lwp = np.sqrt(lwp**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe) + CC
# Heffdaga = np.matrix(Heff).getH()
Heffdaga = np.conj(np.transpose(Heff))
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2):
#todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwp)
# L0 = np.array(np.matrix(Lfullpartial) + M)
L0 = Lfullpartial + M
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 3
#print(nmax)
Ltemp, Omega = LtempCalculus(beta, drivefreq)
#print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
#HASTA ACA
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
@njit
def CPTspectrum8levels_MM(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
ESTA ES LA FUNCION QUE ESTAMOS USANDO
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6+0*freqStep*1e6, freqStep*1e6)
Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwp = lwg*1e6, lwp*1e6
rabG = sg*gPS
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
# tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_MM(rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe)
# if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)],dtype=np.complex_))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27]))
Fluovector.append(Fluo)
# if solvemode == 2:
# Linv = np.linalg.inv(L)
# rhovectorized = [Linv[j][0] for j in range(len(Linv))]
# Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
# Fluovector.append(Fluo)
# tfinal = time.time()
# print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
# if plot:
# plt.xlabel('Probe detuning (MHz)')
# plt.ylabel('Fluorescence (A.U.)')
# plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
# plt.legend()
return DetProbeVectorMHz, Fluovector
# @njit
# def lolo():
# L = FullL_MM(100,200,12,123,14)
# return np.linalg.solve(L, np.array([int(i==0) for i in range(64)],dtype=np.complex_))
# lolo()
# raise ValueError('áaa')
#%%
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
# Frequencyvector, Fluovector = CPTspectrum8levels_MM(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
Frequencyvector, Fluovector = PerformExperiment_8levels_MM(0.9,6.2,135591138.92893547,8482300.164692441,-24.5,32500000.0,0.1,0.1,0.001,0,0,90,0,90,2.0,139078306.77442014,-54.39999999999998,26.26666666666671,0.6666666666666856,circularityprobe=1,plot=False,solvemode=1,detpvec=None)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
# import sys
# import re
# import ast
from scipy.optimize import curve_fit
# import os
# from scipy import interpolate
#%% Importaciones extra
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
globals()[var_name] = PARAMETROS[var_name]
print(f'loaded: {var_name}')
#%%
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')
folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
jvec = [9] # de la 1 a la 9 vale la pena, despues no
drs = [390.5, 399.5, 406, 413.5]
drive=22.1
Frequencies = Freqs[0]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Frequencies], CountsSplit[0][j], yerr=np.sqrt(CountsSplit[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 1
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+3*0.8
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 1
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
t0 = time.time()
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
# print(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], dict(circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None))
print('Done, Total time: ', round((time.time()-t0), 2), "s")
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_1' in globals().keys():
popt_1, pcov_1 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_1 = FitEIT_MM_single(freqslong, *popt_1)
beta1 = popt_1[4]
errorbeta1 = np.sqrt(pcov_1[4,4])
temp1 = popt_1[5]
errortemp1 = np.sqrt(pcov_1[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_1, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 2
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+1.6
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 2
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_2' in globals().keys():
popt_2, pcov_2 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_2 = FitEIT_MM_single(freqslong, *popt_2)
beta2 = popt_2[4]
errorbeta2 = np.sqrt(pcov_2[4,4])
temp2 = popt_2[5]
errortemp2 = np.sqrt(pcov_2[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2, color='darkolivegreen', linewidth=3, label='med 2')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 3
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion+0.8
DetDoppler = -11.5-correccion
print(offsetxpi,DetDoppler)
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 3
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_3' in globals().keys():
popt_3, pcov_3 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_3 = FitEIT_MM_single(freqslong, *popt_3)
beta3 = popt_3[4]
errorbeta3 = np.sqrt(pcov_3[4,4])
temp3 = popt_3[5]
errortemp3 = np.sqrt(pcov_3[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3, color='darkolivegreen', linewidth=3, label='med 3')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 4
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 4
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_4' in globals().keys():
popt_4, pcov_4 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_4 = FitEIT_MM_single(freqslong, *popt_4)
beta4 = popt_4[4]
errorbeta4 = np.sqrt(pcov_4[4,4])
temp4 = popt_4[5]
errortemp4 = np.sqrt(pcov_4[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_4, color='darkolivegreen', linewidth=3, label='med 4')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 5
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-1
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 5
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
#TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_5' in globals().keys():
popt_5, pcov_5 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_5 = FitEIT_MM_single(freqslong, *popt_5)
beta5 = popt_5[4]
errorbeta5 = np.sqrt(pcov_5[4,4])
temp5 = popt_5[5]
errortemp5 = np.sqrt(pcov_5[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_5, color='darkolivegreen', linewidth=3, label='med 5')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 6
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-2.2
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_6' in globals().keys():
popt_6, pcov_6 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 5e4, 1e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_6 = FitEIT_MM_single(freqslong, *popt_6)
beta6 = popt_6[4]
errorbeta6 = np.sqrt(pcov_6[4,4])
temp6 = popt_6[5]
errortemp6 = np.sqrt(pcov_6[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_6, color='darkolivegreen', linewidth=3, label='med 6')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 7
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-3.7
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 7
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_7' in globals().keys():
popt_7, pcov_7 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_7 = FitEIT_MM_single(freqslong, *popt_7)
beta7 = popt_7[4]
errorbeta7 = np.sqrt(pcov_7[4,4])
temp7 = popt_7[5]
errortemp7 = np.sqrt(pcov_7[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_7, color='darkolivegreen', linewidth=3, label='med 7')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 8
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
offsetxpi = 419+correccion-4.9
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 8
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_8' in globals().keys():
popt_8, pcov_8 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10, 10e-3)))
FittedEITpi_8 = FitEIT_MM_single(freqslong, *popt_8)
beta8 = popt_8[4]
errorbeta8 = np.sqrt(pcov_8[4,4])
temp8 = popt_8[5]
errortemp8 = np.sqrt(pcov_8[5,5])
print()
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_8, color='darkolivegreen', linewidth=3, label='med 8')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 9
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 16
offsetxpi = 419+correccion-6
DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve = 9
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[0]]
CountsDR = CountsSplit[0][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(freqs, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
#TEMP = 0.2e-3
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
#return ScaledFluo1
if not 'popt_9' in globals().keys():
popt_9, pcov_9 = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, 0, 0, 0, 0, 0), (2, 20, 5e4, 5e4, 10,10e-3)))
FittedEITpi_9 = FitEIT_MM_single(freqslong, *popt_9)
beta9 = popt_9[4]
errorbeta9 = np.sqrt(pcov_9[4,4])
temp9 = popt_9[5]
errortemp9 = np.sqrt(pcov_9[5,5])
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_9, color='darkolivegreen', linewidth=3, label='med 9')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
#SelectedCurveVec = [9]
if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
if True:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec)
for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve in zip(*tmp_datos):
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
# plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
print(f'\n\nTE FALTA DEFINIR LA VARIABLE minimum_voltage\n\n')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
"""
Temperatura vs
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec,[t*1e3 for t in Temp_vec])
betaslong = np.arange(0,2.7,0.01)
plt.figure()
plt.errorbar(Betas_vec,[t*1e3 for t in Temp_vec],xerr=ErrorBetas_vec, yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.plot(betaslong,expo(betaslong,*popt_exp))
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
"""
AHORA VAMOS A MEDICIONES CON MAS DE UN ION!!!
"""
"""
Ploteo la cpt de referencia / plotting the reference CPT
1: 2 iones, -100 mV dcA
2: 2 iones, -150 mV dcA
3: 2 iones, -50 mV dcA
4: 2 iones, 5 voltajes (el ion se va en la 4ta medicion y en la 5ta ni esta)
5, 6 y 7: 3 iones en donde el scaneo esta centrado en distintos puntos
"""
jvec = [3] # desde la 1, pero la 4 no porque es un merge de curvitas
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
"""
Mergeo la 5, 6 y 7
"""
Freqs5 = [2*f*1e-6 for f in Freqs[5]]
Freqs6 = [2*f*1e-6 for f in Freqs[6]]
Freqs7 = [2*f*1e-6 for f in Freqs[7]]
Counts5 = Counts[5]
Counts6 = Counts[6]
Counts7 = Counts[7]
i_1_ini = 0
i_1 = 36
i_2_ini = 0
i_2 = 24
f_1 = 18
f_2 = 30
scale_1 = 0.92
scale_2 = 0.98
#Merged_freqs_test = [f-f_2 for f in Freqs6[i_2_ini:i_2]]+[f-f_1 for f in Freqs5[i_1_ini:i_1]]+Freqs7
#plt.plot(Merged_freqs_test,'o')
Merged_freqs = [f-f_2 for f in Freqs6[0:i_2]]+[f-f_1 for f in Freqs5[0:i_1]]+Freqs7
Merged_counts = [scale_2*c for c in Counts6[0:i_2]]+[scale_1*c for c in Counts5[0:i_1]]+list(Counts7)
Merged_freqs_rescaled = np.linspace(np.min(Merged_freqs),np.max(Merged_freqs),len(Merged_freqs))
#drs = [391.5, 399.5, 405.5, 414]
drs = [370,379,385,391.5]
plt.figure()
i = 0
for j in jvec:
plt.plot([f-f_1 for f in Freqs5[0:i_1]], [scale_1*c for c in Counts5[0:i_1]],'o')
plt.plot([f-f_2 for f in Freqs6[0:i_2]], [scale_2*c for c in Counts6[0:i_2]],'o')
plt.plot(Freqs7, Counts7,'o')
plt.errorbar(Merged_freqs, Merged_counts, yerr=np.sqrt(Merged_counts), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
for dr in drs:
plt.axvline(dr)
plt.axvline(dr+drive, color='red', linestyle='dashed', alpha=0.3)
plt.axvline(dr-drive, color='red', linestyle='dashed', alpha=0.3)
plt.legend()
#%%
"""
ajusto la mergeada de 3 iones
"""
raise ValueError('STOP')
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = -20
offsetxpi = 438+correccion
DetDoppler = -35-correccion-22
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [f-offsetxpi for f in Merged_freqs]
CountsDR = Merged_counts
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
import numba
@numba.jit
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
#BETA1, BETA2, BETA3 = 0, 0, 2
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence3 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA3, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
ScaledFluo3 = np.array([f*SCALE3 for f in Fluorescence3])
return ScaledFluo1+ScaledFluo2+ScaledFluo3+OFFSET
#return ScaledFluo1
if not 'popt_3ions' in globals().keys():
popt_3ions, pcov_3ions = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.6, 6.2, 3.5e5, 3.5e5, 3.5e5, 2e3, 1, 1, 1], bounds=((0, 0, 0, 0, 0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 5e8, 7e3, 10, 10, 10)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
#FittedEITpi_3ions = FitEIT_MM(freqslong, popt_3ions[0],popt_3ions[1],popt_3ions[2],popt_3ions[3],popt_3ions[4],popt_3ions[5],4,2,0)
#FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
print(popt_3ions)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3ions, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
Veo la medicion de varios voltajes uno atras de otro
Se va en medio de la medicion 4, y en la 5 ni esta
"""
jvec = [2] # desde la 1, pero la 4 no porque es un merge de curvitas
Freqs
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[4]], CountsSplit_2ions[0][j], yerr=np.sqrt(CountsSplit_2ions[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
if not 'popt_2ions_1' in globals().keys():
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
SUPER AJUSTE PARA MED DE 2 IONES
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [3]
if not 'popt_SA_vec_2ions' in globals().keys():
popt_SA_vec_2ions = []
pcov_SA_vec_2ions = []
for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
#SG = 0.6
#SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
if True:
popt_3_SA_2ions, pcov_3_SA_2ions = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[448, -42, 0.6, 8.1, 4e4, 4e4, 6e3, 1, 1.2, 0.5e-3], bounds=((0, -100,0, 0, 0,0,0,0,0, 0), (1000, 0, 2, 20,5e6, 5e6,5e4, 10, 10,10e-3)))
#popt_3_SA_2ions = [448, -42, 8e4, 6e3, 2, 0.5e-3]
popt_SA_vec_2ions.append(popt_3_SA_2ions)
pcov_SA_vec_2ions.append(pcov_3_SA_2ions)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA_2ions, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA_2ions, plot=True)
raise ValueError('Acá tenes que levantar de nuevo los valores que van')
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA_2ions)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
if not 'popt_2ions_1' in globals().keys():
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
if False:
GUARDAR = {}
for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('PARAMETROS.npz', **GUARDAR )
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment