Commit 7fec71de authored by Muriel Bonetto's avatar Muriel Bonetto

agrego carpeta de nuevos plots, soy muri

parent eacb0d60
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
# Solo levanto algunos experimentos
Calib_Files = """000007155-UV_Scan_withcalib_Haeffner
000007160-UV_Scan_withcalib_Haeffner
000007161-UV_Scan_withcalib_Haeffner
000007163-UV_Scan_withcalib_Haeffner
000007165-UV_Scan_withcalib_Haeffner
000007198-UV_Scan_withcalib_Haeffner
000007209-UV_Scan_withcalib_Haeffner
000007211-UV_Scan_withcalib_Haeffner
000007212-UV_Scan_withcalib_Haeffner"""
directory = '/home/liaf-murib/Documents/Artiq/artiq_experiments/analisis/plots/20220503_EspectrosUVnuevos/Data/'
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220503_EspectrosUVnuevos\Data
def SeeKeys(files,directory = ''):
for i, fname in enumerate(files.split()):
data = h5py.File(directory + fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#%%
Amps = []
Freqs = []
Counts = []
T_readouts = []
for i, fname in enumerate(Calib_Files.split()):
print(SeeKeys(Calib_Files,directory = directory))
print(i)
print(fname)
data = h5py.File(directory + fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(list(data['datasets'].keys()))
Amps.append(np.array(data['datasets']['UV_Amplitudes']))
Freqs.append(np.array(data['datasets']['UV_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
T_readouts.append(np.array(data['datasets']['t_readout']))
#def GetBackground(countsper100ms, )
#%%
from scipy.special import jv
def Lorentzian(f, A, x0, gamma, offset):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + offset #40 es el piso de ruido estimado
jvec = [8] #UV_cooling en 90 MHz
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 208, 30, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[2])} MHz')
#%%
#%%
from scipy.special import jv
from scipy.optimize import curve_fit
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2))
def MicromotionSpectra(det, A, beta, x0, offset):
ftrap=22.1
gamma=23
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+ offset
i = 1
#print(P)
while i <= 5:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
jvec = [7] #UV_cooling en 90 MHz
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 25, 208, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(MicromotionSpectra, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):],p0=[70000,0.5,215,200], bounds=((70000,0.1,200,-500),(100000,10,300,500)))
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt), label='Beta ={:0.2f}'.format(popt[1]))
#plt.plot(freqslong, MicromotionSpectra(freqslong, 70000,0.2,215,220), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Beta medido: {popt[1]}')
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment