Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
artiq_experiments
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nicolas Nunez Barreto
artiq_experiments
Commits
7fec71de
Commit
7fec71de
authored
May 20, 2022
by
Muriel Bonetto
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
agrego carpeta de nuevos plots, soy muri
parent
eacb0d60
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
166 additions
and
0 deletions
+166
-0
000007324-UV_Scan_withcalib_Haeffner.h5
...compensacion/Data/000007324-UV_Scan_withcalib_Haeffner.h5
+0
-0
000007325-IR_Scan_withcal_optimized.h5
...scompensacion/Data/000007325-IR_Scan_withcal_optimized.h5
+0
-0
000007326-UV_Scan_withcalib_Haeffner.h5
...compensacion/Data/000007326-UV_Scan_withcalib_Haeffner.h5
+0
-0
000007327-IR_Scan_withcal_optimized.h5
...scompensacion/Data/000007327-IR_Scan_withcal_optimized.h5
+0
-0
000007328-UV_Scan_withcalib_Haeffner.h5
...compensacion/Data/000007328-UV_Scan_withcalib_Haeffner.h5
+0
-0
000007329-IR_Scan_withcal_optimized.h5
...scompensacion/Data/000007329-IR_Scan_withcal_optimized.h5
+0
-0
UV_CPT_spectrums.py
...20520_EspectrosUVyCPT_descompensacion/UV_CPT_spectrums.py
+166
-0
No files found.
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007324-UV_Scan_withcalib_Haeffner.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007325-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007326-UV_Scan_withcalib_Haeffner.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007327-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007328-UV_Scan_withcalib_Haeffner.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/000007329-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
7fec71de
File added
analisis/plots/20220520_EspectrosUVyCPT_descompensacion/UV_CPT_spectrums.py
0 → 100644
View file @
7fec71de
import
h5py
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
sys
import
re
import
ast
from
scipy.optimize
import
curve_fit
import
os
from
scipy
import
interpolate
# Solo levanto algunos experimentos
Calib_Files
=
"""000007155-UV_Scan_withcalib_Haeffner
000007160-UV_Scan_withcalib_Haeffner
000007161-UV_Scan_withcalib_Haeffner
000007163-UV_Scan_withcalib_Haeffner
000007165-UV_Scan_withcalib_Haeffner
000007198-UV_Scan_withcalib_Haeffner
000007209-UV_Scan_withcalib_Haeffner
000007211-UV_Scan_withcalib_Haeffner
000007212-UV_Scan_withcalib_Haeffner"""
directory
=
'/home/liaf-murib/Documents/Artiq/artiq_experiments/analisis/plots/20220503_EspectrosUVnuevos/Data/'
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220503_EspectrosUVnuevos\Data
def
SeeKeys
(
files
,
directory
=
''
):
for
i
,
fname
in
enumerate
(
files
.
split
()):
data
=
h5py
.
File
(
directory
+
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
print
(
fname
)
print
(
list
(
data
[
'datasets'
]
.
keys
()))
#%%
Amps
=
[]
Freqs
=
[]
Counts
=
[]
T_readouts
=
[]
for
i
,
fname
in
enumerate
(
Calib_Files
.
split
()):
print
(
SeeKeys
(
Calib_Files
,
directory
=
directory
))
print
(
i
)
print
(
fname
)
data
=
h5py
.
File
(
directory
+
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
print
(
list
(
data
[
'datasets'
]
.
keys
()))
Amps
.
append
(
np
.
array
(
data
[
'datasets'
][
'UV_Amplitudes'
]))
Freqs
.
append
(
np
.
array
(
data
[
'datasets'
][
'UV_Frequencies'
]))
Counts
.
append
(
np
.
array
(
data
[
'datasets'
][
'counts_spectrum'
]))
T_readouts
.
append
(
np
.
array
(
data
[
'datasets'
][
't_readout'
]))
#def GetBackground(countsper100ms, )
#%%
from
scipy.special
import
jv
def
Lorentzian
(
f
,
A
,
x0
,
gamma
,
offset
):
return
(
A
/
np
.
pi
)
*
0.5
*
gamma
/
(((
f
-
x0
)
**
2
)
+
((
0.5
*
gamma
)
**
2
))
+
offset
#40 es el piso de ruido estimado
jvec
=
[
8
]
#UV_cooling en 90 MHz
plt
.
figure
()
for
j
in
jvec
:
FreqsChosen
=
[
2
*
f
*
1e-6
for
f
in
Freqs
[
j
]]
CountsChosen
=
Counts
[
j
]
portion
=
0.
popt
,
pcov
=
curve_fit
(
Lorentzian
,
FreqsChosen
[
int
(
portion
*
len
(
FreqsChosen
)):],
CountsChosen
[
int
(
portion
*
len
(
FreqsChosen
)):],
p0
=
[
12000
,
208
,
30
,
30
])
freqslong
=
np
.
arange
(
min
(
FreqsChosen
)
-
10
,
max
(
FreqsChosen
)
+
10
,
(
FreqsChosen
[
1
]
-
FreqsChosen
[
0
])
*
0.01
)
plt
.
errorbar
(
FreqsChosen
,
CountsChosen
,
yerr
=
np
.
sqrt
(
np
.
array
(
CountsChosen
)),
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt
.
plot
(
freqslong
,
Lorentzian
(
freqslong
,
popt
[
0
],
popt
[
1
],
popt
[
2
],
popt
[
3
]),
label
=
f
'FWHM 30 MHz'
)
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'Cuentas'
)
plt
.
legend
()
print
(
f
'Ancho medido: {round(popt[2])} MHz'
)
#%%
#%%
from
scipy.special
import
jv
from
scipy.optimize
import
curve_fit
def
Lorentzian
(
f
,
A
,
gamma
,
x0
):
return
(
A
/
np
.
pi
)
*
0.5
*
gamma
/
(((
f
-
x0
)
**
2
)
+
((
0.5
*
gamma
)
**
2
))
def
MicromotionSpectra
(
det
,
A
,
beta
,
x0
,
offset
):
ftrap
=
22.1
gamma
=
23
P
=
A
*
(
jv
(
0
,
beta
)
**
2
)
/
(((
det
-
x0
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
offset
i
=
1
#print(P)
while
i
<=
5
:
P
=
P
+
A
*
((
jv
(
i
,
beta
))
**
2
)
/
((((
det
-
x0
)
+
i
*
ftrap
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
A
*
((
jv
(
-
i
,
beta
))
**
2
)
/
((((
det
-
x0
)
-
i
*
ftrap
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
i
=
i
+
1
#print(P)
return
P
jvec
=
[
7
]
#UV_cooling en 90 MHz
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 25, 208, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
"""
plt
.
figure
()
for
j
in
jvec
:
FreqsChosen
=
[
2
*
f
*
1e-6
for
f
in
Freqs
[
j
]]
CountsChosen
=
Counts
[
j
]
portion
=
0.
popt
,
pcov
=
curve_fit
(
MicromotionSpectra
,
FreqsChosen
[
int
(
portion
*
len
(
FreqsChosen
)):],
CountsChosen
[
int
(
portion
*
len
(
FreqsChosen
)):],
p0
=
[
70000
,
0.5
,
215
,
200
],
bounds
=
((
70000
,
0.1
,
200
,
-
500
),(
100000
,
10
,
300
,
500
)))
freqslong
=
np
.
arange
(
min
(
FreqsChosen
)
-
10
,
max
(
FreqsChosen
)
+
10
,
(
FreqsChosen
[
1
]
-
FreqsChosen
[
0
])
*
0.01
)
plt
.
errorbar
(
FreqsChosen
,
CountsChosen
,
yerr
=
np
.
sqrt
(
np
.
array
(
CountsChosen
)),
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt
.
plot
(
freqslong
,
MicromotionSpectra
(
freqslong
,
*
popt
),
label
=
'Beta ={:0.2f}'
.
format
(
popt
[
1
]))
#plt.plot(freqslong, MicromotionSpectra(freqslong, 70000,0.2,215,220), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'Cuentas'
)
plt
.
legend
()
print
(
f
'Beta medido: {popt[1]}'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment