Commit cbda2280 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

actualizo analisis

parent c75a3b9a
...@@ -134,14 +134,14 @@ plt.legend() ...@@ -134,14 +134,14 @@ plt.legend()
#60 uW de IR #60 uW de IR
jvec = [10, 9, 11, 12, 13, 14, 15, 16] jvec = [10, 9, 11, 12, 13, 14, 15, 16]
Bvec = [2, 0, -1, -1.2, -1.5, -1.75, -2, -2.2] Ibobinavec = [2, 0, -1, -1.2, -1.5, -1.75, -2, -2.2]
jsel = [9,11,12,13,14,15,16] jsel = [9,11,12,13,14,15,16]
plt.figure() plt.figure()
i = 0 i = 0
for j in jvec: for j in jvec:
if j in jsel: if j in jsel:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', label=f'I={Bvec[i]} A', capsize=2, markersize=2) plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', label=f'I={Ibobinavec[i]} A', capsize=2, markersize=2)
#plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3) #plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3)
i = i + 1 i = i + 1
#plt.grid() #plt.grid()
...@@ -583,7 +583,7 @@ plt.ylabel('Normalized fluorescence', fontsize=11) ...@@ -583,7 +583,7 @@ plt.ylabel('Normalized fluorescence', fontsize=11)
plt.grid() plt.grid()
plt.tight_layout() plt.tight_layout()
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/CPT_exp.png',dpi=500) #plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/CPT_exp.png',dpi=500)
#%% #%%
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
......
...@@ -106,7 +106,7 @@ fig1, ax1 = plt.subplots() ...@@ -106,7 +106,7 @@ fig1, ax1 = plt.subplots()
offsetx = 464 offsetx = 464
ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o') #ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o')
run = True run = True
......
...@@ -80,6 +80,7 @@ plt.ylabel('Cuentas') ...@@ -80,6 +80,7 @@ plt.ylabel('Cuentas')
#%% #%%
from scipy.signal import savgol_filter as sf from scipy.signal import savgol_filter as sf
import seaborn as sns
plt.style.use('seaborn-ticks') plt.style.use('seaborn-ticks')
...@@ -95,9 +96,11 @@ for j in jselected: ...@@ -95,9 +96,11 @@ for j in jselected:
bkgr2 = np.min([FluovsBshort[0][1],FluovsBshort[1][1],FluovsBshort[2][1],FluovsBshort[3][1]]) bkgr2 = np.min([FluovsBshort[0][1],FluovsBshort[1][1],FluovsBshort[2][1],FluovsBshort[3][1]])
#bkgrposta = np.min()
plt.figure(figsize=(3.5, 3)) plt.figure(figsize=(3.5, 3))
for j in range(len(jselected)): for j in range(len(jselected)):
rawcuentas = [f-bkgr for f in FluovsBshort[j]] rawcuentas = [f-bkgr2 for f in FluovsBshort[j]]
cuentas = np.array(rawcuentas[0:3]+list(sf(rawcuentas[3:],7,3))) cuentas = np.array(rawcuentas[0:3]+list(sf(rawcuentas[3:],7,3)))
plt.plot(PotenciasIR[1:], cuentas[1:], 'o', color=colorsselected[j], markersize=3.5) plt.plot(PotenciasIR[1:], cuentas[1:], 'o', color=colorsselected[j], markersize=3.5)
plt.fill_between(PotenciasIR[1:], cuentas[1:]-np.sqrt(cuentas)[1:], cuentas[1:]+np.sqrt(cuentas)[1:], color=colorsselected[j], alpha=0.4) plt.fill_between(PotenciasIR[1:], cuentas[1:]-np.sqrt(cuentas)[1:], cuentas[1:]+np.sqrt(cuentas)[1:], color=colorsselected[j], alpha=0.4)
...@@ -108,7 +111,7 @@ plt.grid() ...@@ -108,7 +111,7 @@ plt.grid()
plt.xlabel(r'Repump power ($\mu$W)', fontsize=11) plt.xlabel(r'Repump power ($\mu$W)', fontsize=11)
plt.ylabel('Counts', fontsize=11) plt.ylabel('Counts', fontsize=11)
plt.tight_layout() plt.tight_layout()
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/Barriendopotencia_exp.png',dpi=500) #plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/Barriendopotencia_exp.png',dpi=500)
#%% #%%
# en funcion del campo magnetico ahora # en funcion del campo magnetico ahora
...@@ -197,39 +200,120 @@ plt.grid() ...@@ -197,39 +200,120 @@ plt.grid()
""" """
#longBvec = np.arange(np.min(Bvec), np.max(Bvec), 0.1*Bvec[1]-0.1*Bvec[0]) #longBvec = np.arange(np.min(Bvec), np.max(Bvec), 0.1*Bvec[1]-0.1*Bvec[0])
longBvec = np.arange(0.005, 0.033, 0.01*Bvec[1]-0.01*Bvec[0]) longBvec = np.arange(-0.005, 0.033, 0.01*Bvec[1]-0.01*Bvec[0])
def LinearFitPotvsB(b, pendiente, ordenada): def LinearFitPotvsB(b, pendiente):
return pendiente*b + ordenada #ordenada=0
return pendiente*b
#popt_expvspot, pcov_expvspot = curve_fit(LinearFitPotvsB, np.array([0]+Bvec), np.array([0]+MaxsPotsExp)) #popt_expvspot, pcov_expvspot = curve_fit(LinearFitPotvsB, np.array([0]+Bvec), np.array([0]+MaxsPotsExp))
popt_expvspot, pcov_expvspot = curve_fit(LinearFitPotvsB, np.array(Bvec), np.array(MaxsPotsExp)) popt_expvspot, pcov_expvspot = curve_fit(LinearFitPotvsB, np.array(Bvec), np.array(MaxsPotsExp))
yerr0=4
print(popt_expvspot) print(popt_expvspot)
print(f'Ordenada al origen: {round(popt_expvspot[1],1)} +- {round(np.sqrt(pcov_expvspot[1,1]),1)} mW/G') #print(f'Ordenada al origen: {round(popt_expvspot[1],1)} +- {round(np.sqrt(pcov_expvspot[1,1]),1)} mW/G')
#%% #%%
''' '''
Figura paper. Umbral vs campo magnetico con la calibracion Figura paper. Umbral vs campo magnetico con la calibracion y la teoria superpuesta (la teoria sale de threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica)
''' '''
propor = LinearFitPotvsB(longBvec, *popt_expvspot)[-1]/RabiVector[0][-1] #esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
#colores=sns.color_palette("mako")
colores=sns.color_palette("rocket")
plt.figure(figsize=(3.5, 3)) plt.figure(figsize=(3.5, 3))
plt.errorbar([b*1e3 for b in Bvec], MaxsPotsExp, xerr=1e3*MeanError/(2*np.pi)/c, yerr=4, color='purple', fmt="o", markersize=5) plt.errorbar([b*1e3 for b in Bvec], MaxsPotsExp/propor, xerr=1e3*MeanError/(2*np.pi)/c, yerr=yerr0/propor, color=colores[0], fmt="o", markersize=4, zorder=3, elinewidth=1)
#plt.plot([0],[0],'o', markersize=5) #plt.plot([0],[0],'o', markersize=5)
plt.plot([b*1e3 for b in longBvec], LinearFitPotvsB(longBvec, *popt_expvspot), linewidth=2, color='orangered') #plt.plot([b*1e3 for b in longBvec], LinearFitPotvsB(longBvec, *popt_expvspot), linewidth=1., color=colores[3])
plt.xlabel('Magnetic field (mG)', fontsize=11) plt.plot(CamposVector[0], RabiVector[0], linewidth=1., color=colores[3]) #esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
plt.ylabel('Threshold power (mW)', fontsize=11) plt.xlabel('Magnetic field (mG)', fontsize=12, fontname='STIXGeneral')
plt.xlim(6,32) #plt.ylabel('Threshold power (mW)', fontsize=11, fontname='STIXGeneral')
plt.ylim(17,81) plt.ylabel(r'$\left(\Omega_{DP}/\Gamma_{\mathrm{DP}}\right)^2$', fontsize=12, fontname='STIXGeneral')
plt.xticks([0,5,10,15,20,25,30], fontsize=12, fontname='STIXGeneral')
plt.yticks([0.,0.5,1.,1.5,2.], fontsize=12, fontname='STIXGeneral')
plt.xlim(0,32)
#plt.ylim(0,81)
plt.grid() plt.grid()
plt.tight_layout() plt.tight_layout()
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/umbralvsB_exp.png',dpi=500) #plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/umbralvsB_exp.png',dpi=500)
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Papers/2022 B vs K eigenbasis/Figuras_finales/thresholdvsB_exp.pdf')
#%%
'''
Figura paper. Curvas de fluorescencia vs potencia del IR
'''
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
from scipy.signal import savgol_filter as sf
import seaborn as sns
plt.style.use('seaborn-ticks')
colors=sns.color_palette("rocket", 10)
colorsselected=[colors[0],colors[3],colors[5],colors[8]]
FluovsBshort = []
#jselected = [0, 1, 4, 8]
jselected = [8, 2, 1, 0]
Bcampos = [b*1e3 for b in Bvec]
Bfields = [Bcampos[6], Bcampos[2], Bcampos[1], Bcampos[0]]
for j in jselected:
FluovsBshort.append(IR_fluorescence_vec[j])
#bkgr2 = np.min([FluovsBshort[0][1],FluovsBshort[1][1],FluovsBshort[2][1],FluovsBshort[3][1]])
#bkgrposta = np.min()
PotenciasMaximos_parcial = MaxsPotsExp/propor
PotenciasMaximos = [PotenciasMaximos_parcial[6],PotenciasMaximos_parcial[2],PotenciasMaximos_parcial[1],PotenciasMaximos_parcial[0]]
smoothen_order = [3,3,3,1]
err = [2,1,1,1]
orden=5
plt.figure(figsize=(3.5, 3))
for j in range(len(jselected)):
print(j)
rawcuentas = [f-bkgr for f in FluovsBshort[j]]
#cuentas = np.array(rawcuentas[0:3]+list(sf(rawcuentas[3:],7,3))) #este va bien
cuentas = np.array(rawcuentas[0:3]+list(sf(rawcuentas[3:],13,smoothen_order[j]))) #este va bien
#maximumfluo_index = np.array(cuentas[1:-1]).argmax()
maximumfluo_index = find_nearest(PotenciasIR[1:-1]/propor, PotenciasMaximos[j])
plt.plot(PotenciasIR[1:-1]/propor, cuentas[1:-1]/1000, 'o', color=colorsselected[j], markersize=3.5, label=f"$B={int(round(Bfields[j],0))}({err[j]})$ mG",zorder=orden)
plt.vlines(x=(1/propor)*PotenciasIR[1:-1][maximumfluo_index],ymin=0,ymax=cuentas[1:-1][maximumfluo_index]/1000,color=colorsselected[j],zorder=1,linewidth=2)
plt.fill_between(PotenciasIR[1:-1]/propor, (cuentas[1:-1]-1*np.sqrt(cuentas)[1:-1])/1000, (cuentas[1:-1]+1*np.sqrt(cuentas)[1:-1])/1000, color=colorsselected[j], alpha=0.4, zorder=orden)
orden=orden-1
#plt.errorbar(PotenciasIR, cuentas, yerr=1*np.sqrt(cuentas), color='r', fmt='o', capsize=2, markersize=4)
#plt.xlim(0, 90)
#plt.ylim(-100,3500)
#for pot in MaxsPotsExp/propor:
# plt.axvline(pot)
plt.grid()
plt.xlabel(r'Laser intensity $\left(\Omega_{\mathrm{DP}}/\Gamma_{\mathrm{DP}}\right)^2$', fontsize=12, fontname='STIXGeneral')
#plt.xlabel(r'$\Gamma$', fontsize=12, fontname='STIXGeneral')
plt.ylabel('Fluorescence (kcounts/s)', fontsize=12, fontname='STIXGeneral')
plt.xticks([0.,0.5,1.,1.5,2.], fontsize=12, fontname='STIXGeneral')
plt.yticks([0,1,2,3], fontsize=12, fontname='STIXGeneral')
plt.ylim(0,3.7)
plt.tight_layout()
plt.legend(loc='upper left', frameon=True, fontsize=7, handletextpad=0.1)
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Papers/2022 B vs K eigenbasis/Figuras_finales/Measurement_thresholds_v2.pdf')
......
...@@ -92,6 +92,106 @@ for i in ivec: ...@@ -92,6 +92,106 @@ for i in ivec:
aspectratio = (np.array(FrequencyVec[i])[pics[0]][-1]*1e-6)/(np.array(FrequencyVec[i])[pics[0]][0]*1e-6) aspectratio = (np.array(FrequencyVec[i])[pics[0]][-1]*1e-6)/(np.array(FrequencyVec[i])[pics[0]][0]*1e-6)
print(aspectratio**(-1)) print(aspectratio**(-1))
#%%
"""
Nuevas mediciones: dan mejor
"""
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230510_MotionalSpectrum/DataRawElectric/')
Data = []
for ii in range(1,10):
Data.append(f"s0{ii}.dat")
for ii in range(10,14):
Data.append(f"s{ii}.dat")
#for ii in range(40,49):
# Data.append(f"ss{ii}.dat")
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230510_MotionalSpectrum/DataRawElectric2/')
for ii in range(1,10):
Data.append(f"s0{ii}.dat")
for ii in range(10,24):
Data.append(f"s{ii}.dat")
#for ii in range(40,49):
# Data.append(f"ss{ii}.dat")
FrequencyVec = []
FluoVec = []
for dd in Data:
data = np.genfromtxt(dd,
skip_header=1,
names=True,
dtype=None,
delimiter=' ')
FrequencyVec.append([data[i][1] for i in range(len(data))])
FluoVec.append([data[i][2] for i in range(len(data))])
#%%
"""
Miro modo radial con roi chiquita, una en el medio del ion y otra en donde el ion se estira en el costadito
"""
ivec = [33]
plt.figure()
for i in ivec:
plt.plot([f*1e-6 for f in FrequencyVec[i]], FluoVec[i],'-o')
#plt.xlim(0.3,0.6)
#%%
"""
Modos radiales
"""
ivec = [23]
plt.figure()
for i in ivec:
plt.plot([f*1e-6 for f in FrequencyVec[i]], FluoVec[i],'o')
#plt.xlim(0.3,0.6)
#%%
"""
Todos los modos de una
"""
ivec = [33]
ki=3500
kf=-1500
plt.figure()
plt.plot([f*1e-6 for f in FrequencyVec[23]], FluoVec[23],'ro')
plt.plot([f*1e-6 for f in FrequencyVec[33]][ki:kf], FluoVec[33][ki:kf],'ro')
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.xlim(1.5,1.6)
#%%
"""
Miro modo radial con roi chiquita, una en el medio del ion y otra en donde el ion se estira en el costadito
"""
ivec = [0,1]
plt.figure()
plt.plot([f*1e-6 for f in FrequencyVec[0]], FluoVec[0],'o')
plt.plot([f*1e-6+0.003 for f in FrequencyVec[1]], FluoVec[1],'o')
#plt.xlim(0.3,0.6)
#%%
"""
Encuentro el primer modo relativo que es el breathing por ser sqrt(3)*wx
"""
ivec = [7]
plt.figure()
for i in ivec:
plt.plot([f*1e-6 for f in FrequencyVec[i]], FluoVec[i],'o')
plt.xlim(1.32,1.42)
plt.ylim(104.5,108.5)
...@@ -88,7 +88,8 @@ RefBins = [t*1e6 for t in SP_Bins[0][:-1]] ...@@ -88,7 +88,8 @@ RefBins = [t*1e6 for t in SP_Bins[0][:-1]]
plt.figure() plt.figure()
for Height in [SP_Heigths[3]]: for Height in [SP_Heigths[3]]:
plt.plot(RefBins, Height) print(Height)
plt.plot(RefBins, Height,'o')
plt.xlim(0.15, 0.5) plt.xlim(0.15, 0.5)
......
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230609_LocalizedSaturationInCrystal/Data/')
MOTIONAL_FILES = """000012579-MeltingExperiment
000012580-MeltingExperiment
000012581-MeltingExperiment
000012582-MeltingExperiment
000012583-MeltingExperiment
000012584-MeltingExperiment
000012585-MeltingExperiment
000012586-MeltingExperiment
000012587-MeltingExperiment
000012588-MeltingExperiment
000012597-MeltingExperiment
000012603-MeltingExperiment
000012604-MeltingExperiment
000012605-MeltingExperiment
000012606-MeltingExperiment
000012607-MeltingExperiment
000012608-MeltingExperiment
000012609-MeltingExperiment
000012611-MeltingExperiment
000012612-MeltingExperiment
000012613-MeltingExperiment
000012614-MeltingExperiment
000012615-MeltingExperiment
000012617-MeltingExperiment
000012619-MeltingExperiment
000012630-MeltingExperiment
000012631-MeltingExperiment
000012632-MeltingExperiment
000012633-MeltingExperiment
000012634-MeltingExperiment
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(MOTIONAL_FILES))
#%%
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
CountsRoi1 = []
CountsRoi2 = []
Amplitudes = []
UV_amps = []
IR_amps = []
for i, fname in enumerate(MOTIONAL_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
Amplitudes.append(np.array(data['datasets']['amplitudes']))
CountsRoi1.append(np.array(data['datasets']['counts_roi1']))
CountsRoi2.append(np.array(data['datasets']['counts_roi2']))
UV_amps.append(np.array(data['datasets']['UV_measurement_amp']))
IR_amps.append(np.array(data['datasets']['IR1_measurement_amp']))
#%%
"""
Vemos transiciones de fase en un cristal de 7 iones midiendo luz en un ion y en un sitio entre dos iones
variando la potencia del laser UV
"""
#19 y 20: rois en dos iones. 19: uno a la derecha y otro externo del cetro. 20: uno a la derecha y otro al a izquierda
#21 para abajo: 7 iones
#22, 23, 24: son 6 iones con 5 deslocalizados afuera y 1 adentro
jvec = [9,8,7,6]
plt.figure()
i = 0
for j in jvec:
#plt.errorbar(Amplitudes[j], CountsRoi1[j], yerr=np.sqrt(CountsRoi1[j]), color='red', fmt='-o', capsize=2, markersize=2)
#plt.plot(Amplitudes[j][1:], CountsRoi1[j][1:], 'o',color='red', markersize=2,label=f'UVamp: {UV_amps[j]}')
plt.plot(Amplitudes[j][1:], CountsRoi2[j][1:], 'o', markersize=2,label=f'UVamp: {UV_amps[j]}')
print(f'UVamp: {UV_amps[j]}')
i = i + 1
plt.xlabel('Amplitud Artiq')
plt.ylabel('Cuentas ROI')
plt.xlim(0.05,0.23)
plt.ylim(7800,8550)
plt.grid()
plt.legend()
#%%
"""
Vemos saturacion en pares de iones distintos de un cristal
"""
#19 y 20: rois en dos iones. 19: uno a la derecha y otro externo del cetro. 20: uno a la derecha y otro al a izquierda
#21 para abajo: 7 iones
#22, 23, 24: son 6 iones con 5 deslocalizados afuera y 1 adentro
jvec = [20]
plt.figure()
i = 0
for j in jvec:
#plt.errorbar(Amplitudes[j], CountsRoi1[j], yerr=np.sqrt(CountsRoi1[j]), color='red', fmt='-o', capsize=2, markersize=2)
plt.plot(Amplitudes[j][1:], CountsRoi1[j][1:], 'o',color='red', markersize=2, label='Ion derecha arriba')
plt.plot(Amplitudes[j][1:], [c*1.004 for c in CountsRoi2[j][1:]], 'o',color='blue', markersize=2, label='Ion izquierda arriba')
i = i + 1
plt.xlabel('Amplitud Artiq')
plt.ylabel('Cuentas ROI')
#plt.xlim(851,856)
#plt.ylim(600,1700)
plt.grid()
plt.legend()
#%%
"""
saturacion de cristal de dos iones, una roi por cada ion. se ven muy parecidas
"""
#19 y 20: rois en dos iones. 19: uno a la derecha y otro externo del cetro. 20: uno a la derecha y otro al a izquierda
#21 para abajo: 7 iones
#22, 23, 24: son 6 iones con 5 deslocalizados afuera y 1 adentro
jvec = [25]
off = 8020
kte=2.4
plt.figure()
i = 0
for j in jvec:
#plt.errorbar(Amplitudes[j], CountsRoi1[j], yerr=np.sqrt(CountsRoi1[j]), color='red', fmt='-o', capsize=2, markersize=2)
plt.plot(Amplitudes[j][1:], [c-off for c in CountsRoi1[j][1:]], 'o',color='red', markersize=2, label='Ion derecha')
plt.plot(Amplitudes[j][1:], [(c-off)*kte for c in CountsRoi2[j][1:]], 'o',color='blue', markersize=2, label='Ion izquierda')
i = i + 1
plt.xlabel('Amplitud Artiq')
plt.ylabel('Cuentas ROI')
#plt.xlim(851,856)
#plt.ylim(600,1700)
plt.grid()
plt.legend()
#%%
"""
saturacion de cristal de dos iones, una roi por cada ion. se ven muy parecidas
"""
#19 y 20: rois en dos iones. 19: uno a la derecha y otro externo del cetro. 20: uno a la derecha y otro al a izquierda
#21 para abajo: 7 iones
#22, 23, 24: son 6 iones con 5 deslocalizados afuera y 1 adentro
jvec = [26,27,28,29]
off = 8020
kte=2.4
plt.figure()
i = 0
for j in jvec:
#plt.errorbar(Amplitudes[j], CountsRoi1[j], yerr=np.sqrt(CountsRoi1[j]), color='red', fmt='-o', capsize=2, markersize=2)
#plt.plot(Amplitudes[j][1:], [c-off for c in CountsRoi1[j][1:]], 'o',color='red', markersize=2, label='Ion derecha')
plt.plot(Amplitudes[j][1:], [(c-off)*kte for c in CountsRoi2[j][1:]], 'o',color='blue', markersize=2, label='Ion izquierda')
i = i + 1
plt.xlabel('Amplitud Artiq')
plt.ylabel('Cuentas ROI')
#plt.xlim(851,856)
#plt.ylim(600,1700)
plt.grid()
plt.legend()
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 2 16:30:09 2020
@author: oem
"""
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
from EITfit.threeLevel_2repumps_linealpol_python_scripts import CPTspectrum8levels, CPTspectrum8levels_fixedRabi
import random
from scipy.signal import savgol_filter as sf
def CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
else:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return [detuningdoppler + dr for dr in NegativeDR], [detuningrepump + dr for dr in PositiveDR]
def GetClosestIndex(Vector, value, tolerance=1e-3):
i = 0
while i<len(Vector):
if abs(Vector[i] - value) < tolerance:
return i
else:
i = i + 1
return GetClosestIndex(Vector, value, tolerance=2*tolerance)
def FindDRFrequencies(Freq, Fluo, TeoDR, entorno=3):
"""
Busca los indices y la frecuencia de los minimos en un entorno cercano al de la DR.
Si no encuentra, devuelve el valor teórico.
"""
IndiceDRteo1, IndiceEntornoinicialDRteo1, IndiceEntornofinalDRteo1 = GetClosestIndex(Freq, TeoDR[0]), GetClosestIndex(Freq, TeoDR[0]-entorno), GetClosestIndex(Freq, TeoDR[0]+entorno)
IndiceDRteo2, IndiceEntornoinicialDRteo2, IndiceEntornofinalDRteo2 = GetClosestIndex(Freq, TeoDR[1]), GetClosestIndex(Freq, TeoDR[1]-entorno), GetClosestIndex(Freq, TeoDR[1]+entorno)
IndiceDRteo3, IndiceEntornoinicialDRteo3, IndiceEntornofinalDRteo3 = GetClosestIndex(Freq, TeoDR[2]), GetClosestIndex(Freq, TeoDR[2]-entorno), GetClosestIndex(Freq, TeoDR[2]+entorno)
IndiceDRteo4, IndiceEntornoinicialDRteo4, IndiceEntornofinalDRteo4 = GetClosestIndex(Freq, TeoDR[3]), GetClosestIndex(Freq, TeoDR[3]-entorno), GetClosestIndex(Freq, TeoDR[3]+entorno)
IndiceDRteo5, IndiceEntornoinicialDRteo5, IndiceEntornofinalDRteo5 = GetClosestIndex(Freq, TeoDR[4]), GetClosestIndex(Freq, TeoDR[4]-entorno), GetClosestIndex(Freq, TeoDR[4]+entorno)
IndiceDRteo6, IndiceEntornoinicialDRteo6, IndiceEntornofinalDRteo6 = GetClosestIndex(Freq, TeoDR[5]), GetClosestIndex(Freq, TeoDR[5]-entorno), GetClosestIndex(Freq, TeoDR[5]+entorno)
EntornoFreqDR1, EntornoFreqDR2 = Freq[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Freq[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFreqDR3, EntornoFreqDR4 = Freq[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Freq[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFreqDR5, EntornoFreqDR6 = Freq[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Freq[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
EntornoFluoDR1, EntornoFluoDR2 = Fluo[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Fluo[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFluoDR3, EntornoFluoDR4 = Fluo[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Fluo[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFluoDR5, EntornoFluoDR6 = Fluo[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Fluo[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
IndiceFluoMinimaEntorno1, IndiceFluoMinimaEntorno2 = argrelextrema(np.array(EntornoFluoDR1), np.less)[0], argrelextrema(np.array(EntornoFluoDR2), np.less)[0]
IndiceFluoMinimaEntorno3, IndiceFluoMinimaEntorno4 = argrelextrema(np.array(EntornoFluoDR3), np.less)[0], argrelextrema(np.array(EntornoFluoDR4), np.less)[0]
IndiceFluoMinimaEntorno5, IndiceFluoMinimaEntorno6 = argrelextrema(np.array(EntornoFluoDR5), np.less)[0], argrelextrema(np.array(EntornoFluoDR6), np.less)[0]
try:
FreqDR1 = EntornoFreqDR1[int(IndiceFluoMinimaEntorno1)]
IndiceDR1 = GetClosestIndex(Freq, FreqDR1)
except:
FreqDR1 = TeoDR[0]
IndiceDR1 = IndiceDRteo1
try:
FreqDR2 = EntornoFreqDR2[int(IndiceFluoMinimaEntorno2)]
IndiceDR2 = GetClosestIndex(Freq, FreqDR2)
except:
FreqDR2 = TeoDR[1]
IndiceDR2 = IndiceDRteo2
try:
FreqDR3 = EntornoFreqDR3[int(IndiceFluoMinimaEntorno3)]
IndiceDR3 = GetClosestIndex(Freq, FreqDR3)
except:
FreqDR3 = TeoDR[2]
IndiceDR3 = IndiceDRteo3
try:
FreqDR4 = EntornoFreqDR4[int(IndiceFluoMinimaEntorno4)]
IndiceDR4 = GetClosestIndex(Freq, FreqDR4)
except:
FreqDR4 = TeoDR[3]
IndiceDR4 = IndiceDRteo4
try:
FreqDR5 = EntornoFreqDR5[int(IndiceFluoMinimaEntorno5)]
IndiceDR5 = GetClosestIndex(Freq, FreqDR5)
except:
FreqDR5 = TeoDR[4]
IndiceDR5 = IndiceDRteo5
try:
FreqDR6 = EntornoFreqDR6[int(IndiceFluoMinimaEntorno6)]
IndiceDR6 = GetClosestIndex(Freq, FreqDR6)
except:
FreqDR6 = TeoDR[5]
IndiceDR6 = IndiceDRteo6
return [IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6], [FreqDR1, FreqDR2, FreqDR3, FreqDR4, FreqDR5, FreqDR6]
def FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=-100, getindices=False):
"""
Toma los indices donde estan las DR y evalua su fluorescencia. Esos indices son minimos locales en un entorno
cercano a las DR teoricas y, si no hay ningun minimo, toma la teorica.
Luego, hace el cociente de esa fluorescencia y un factor de normalización segun NormalizationCriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
4: Deuelve el cociente entre la fluorescencia del minimo y el valor de fluorescencia a detuning 0 MHz
"""
IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6 = IndicesDR[0], IndicesDR[1], IndicesDR[2], IndicesDR[3], IndicesDR[4], IndicesDR[5]
FluorescenceOfMinimums = [Fluo[IndiceDR1], Fluo[IndiceDR2], Fluo[IndiceDR3], Fluo[IndiceDR4], Fluo[IndiceDR5], Fluo[IndiceDR6]]
FrequencyOfMinimums = [Freq[IndiceDR1], Freq[IndiceDR2], Freq[IndiceDR3], Freq[IndiceDR4], Freq[IndiceDR5], Freq[IndiceDR6]]
DistanciaFrecuenciaCociente = 25
if NormalizationCriterium==0:
print('che')
return FrequencyOfMinimums, FluorescenceOfMinimums
if NormalizationCriterium==1:
Fluorescenciacerodetuning = Fluo[GetClosestIndex(Freq, 0)]
Fluorescenciaasintotica = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
return FrequencyOfMinimums, np.array([Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica])
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
indiceizquierda = k
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
indicederecha = l
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
#asintotico
FluoNormDivisor = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
if NormalizationCriterium==4:
#este te tira la fluorescencia de detuning 0
FluoNormDivisor = Fluo[GetClosestIndex(Freq, 0)]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
print('Esto: ', RelativeFluorescenceOfMinimums)
if NormalizationCriterium==2 and getindices==True:
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums, indiceizquierda, indicederecha
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetFinalMaps(MapasDR1, MapasDR2, MapasDR3, MapasDR4, MapasDR5, MapasDR6):
"""
Nota: esto vale para polarizacion del 397 sigma+ + sigma-. Sino hay que cambiar los coeficientes.
La estructura es:
MapasDRi = [MapaMedido_criterio1_DRi, MapaMedido_criterio2_DRi, MapaMedido_criterio3_DRi, MapaMedido_criterio4_DRi]
"""
Mapa1 = MapasDR1[0]
Mapa2pi = np.sqrt(3)*(MapasDR2[1] + MapasDR5[1])
Mapa2smas = np.sqrt(12/2)*MapasDR3[1] + (2/np.sqrt(2))*MapasDR6[1]
Mapa2smenos = (2/np.sqrt(2))*MapasDR1[1] + np.sqrt(12/2)*MapasDR4[1]
Mapa3pi = np.sqrt(3)*(MapasDR2[2] + MapasDR5[2])
Mapa3smas = np.sqrt(12/2)*MapasDR3[2] + (2/np.sqrt(2))*MapasDR6[2]
Mapa3smenos = (2/np.sqrt(2))*MapasDR1[2] + np.sqrt(12/2)*MapasDR4[2]
return Mapa1, [Mapa2pi, Mapa2smas, Mapa2smenos], [Mapa3pi, Mapa3smas, Mapa3smenos]
def CombinateDRwithCG(RelMinMedido1, RelMinMedido2, RelMinMedido3, RelMinMedido4):
Fluo1 = RelMinMedido1[0]
Fluo2pi = np.sqrt(3)*(RelMinMedido2[1] + RelMinMedido2[4])
Fluo2smas = np.sqrt(12/2)*RelMinMedido2[2] + (2/np.sqrt(2))*RelMinMedido2[5]
Fluo2smenos = (2/np.sqrt(2))*RelMinMedido2[0] + np.sqrt(12/2)*RelMinMedido2[3]
Fluo3pi = np.sqrt(3)*(RelMinMedido3[1] + RelMinMedido3[4])
Fluo3smas = np.sqrt(12/2)*RelMinMedido3[2] + (2/np.sqrt(2))*RelMinMedido3[5]
Fluo3smenos = (2/np.sqrt(2))*RelMinMedido3[0] + np.sqrt(12/2)*RelMinMedido3[3]
return Fluo1, [Fluo2pi, Fluo2smas, Fluo2smenos], [Fluo3pi, Fluo3smas, Fluo3smenos]
def IdentifyPolarizationCoincidences(theoricalmap, target, tolerance=1e-1):
"""
Busca en un mapa 2D la presencia de un valor target (medido) con tolerancia tolerance.
Si lo encuentra, pone un 1. Sino, un 0. Al plotear con pcolor se verá
en blanco la zona donde el valor medido se puede hallar.
"""
CoincidenceMatrix = np.zeros((len(theoricalmap), len(theoricalmap[0])))
i = 0
while i<len(theoricalmap):
j = 0
while j<len(theoricalmap[0]):
if abs(theoricalmap[i][j]-target) < tolerance:
CoincidenceMatrix[i][j] = 1
j=j+1
i=i+1
return CoincidenceMatrix
def RetrieveAbsoluteCoincidencesBetweenMaps(MapsVectors):
MatrixSum = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
AbsoluteCoincidencesMatrix = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
MatrixMapsVectors = []
for i in range(len(MapsVectors)):
MatrixMapsVectors.append(np.matrix(MapsVectors[i]))
for i in range(len(MatrixMapsVectors)):
MatrixSum = MatrixSum + MatrixMapsVectors[i]
MaxNumberOfCoincidences = np.max(MatrixSum)
ListMatrixSum = [list(i) for i in list(np.array(MatrixSum))]
for i in range(len(ListMatrixSum)):
for j in range(len(ListMatrixSum[0])):
if ListMatrixSum[i][j] == MaxNumberOfCoincidences:
AbsoluteCoincidencesMatrix[i][j] = 1
return AbsoluteCoincidencesMatrix, MaxNumberOfCoincidences
def MeasureMeanValueOfEstimatedArea(AbsoluteCoincidencesMap, X, Y):
NonZeroIndices = np.nonzero(AbsoluteCoincidencesMap)
Xsum = 0
Xvec = []
Ysum = 0
Yvec = []
N = len(NonZeroIndices[0])
for i in range(N):
Xsum = Xsum + X[NonZeroIndices[1][i]]
Xvec.append(X[NonZeroIndices[1][i]])
Ysum = Ysum + Y[NonZeroIndices[0][i]]
Yvec.append(Y[NonZeroIndices[0][i]])
Xaverage = Xsum/N
Yaverage = Ysum/N
Xspread = np.std(Xvec)
Yspread = np.std(Yvec)
return Xaverage, Yaverage, N, Xspread, Yspread
def MeasureRelativeFluorescenceFromCPT(Freq, Fluo, u, titadoppler, detuningrepump, detuningdoppler, frefasint=-100, entorno=3):
ResonanciasTeoricas, ResonanciasPositivas = CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)
IndicesDR, FreqsDR = FindDRFrequencies(Freq, Fluo, ResonanciasTeoricas, entorno=entorno)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums0 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=0, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums1 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums2, indiceizquierda, indicederecha = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=2, frecuenciareferenciacriterioasintotico=frefasint, getindices=True)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums3 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=3, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums4 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=4, frecuenciareferenciacriterioasintotico=frefasint)
print('hola')
print(RelativeFluorescenceOfMinimums0)
return RelativeFluorescenceOfMinimums0, RelativeFluorescenceOfMinimums1, RelativeFluorescenceOfMinimums2, RelativeFluorescenceOfMinimums3, RelativeFluorescenceOfMinimums4, IndicesDR, [indiceizquierda, indicederecha]
def GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fit(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, min(freqs), max(freqs) + freqs[1]-freqs[0], freqs[1]-freqs[0], plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def AddNoiseToCPT(Fluo, noisefactor):
return [f+noisefactor*(2*random.random()-1) for f in Fluo]
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
def GetMinimaInfo(Freq, Fluo, u, titadoppler, detuningdoppler, detuningrepump, MinimumCriterium=2, NormalizationCriterium=1):
"""
FUNCION VIEJA
Esta funcion devuelve valores de frecuencias y fluorescencia relativa de los minimos.
Minimumcriterion:
1: Saca los minimos con funcion argelextrema
2: Directamente con las frecuencias teoricas busca las fluorescencias
Normalizationcriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
"""
FluorescenceOfMaximum = max(Fluo)
FrequencyOfMaximum = Freq[Fluo.index(FluorescenceOfMaximum)]
#criterio para encontrar los minimos
#criterio usando minimos de la fluorescencia calculados con la curva
if MinimumCriterium == 1:
LocationOfMinimums = argrelextrema(np.array(Fluo), np.less)[0]
FluorescenceOfMinimums = np.array([Fluo[i] for i in LocationOfMinimums])
FrequencyOfMinimums = np.array([Freq[j] for j in LocationOfMinimums])
#criterio con las DR teoricas
if MinimumCriterium == 2:
FrecuenciasDRTeoricas, FrecuenciasDRTeoricasPositivas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
FrequencyOfMinimums = []
FluorescenceOfMinimums =[]
print(FrecuenciasDRTeoricas)
k=0
ventanita = 0.001
while k < len(Freq):
if Freq[k] < FrecuenciasDRTeoricas[0] + ventanita and Freq[k] > FrecuenciasDRTeoricas[0] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[1] + ventanita and Freq[k] > FrecuenciasDRTeoricas[1] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[2] + ventanita and Freq[k] > FrecuenciasDRTeoricas[2] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[3] + ventanita and Freq[k] > FrecuenciasDRTeoricas[3] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[4] + ventanita and Freq[k] > FrecuenciasDRTeoricas[4] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[5] + ventanita and Freq[k] > FrecuenciasDRTeoricas[5] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
k = k + 1
print(FrequencyOfMinimums)
if len(FrequencyOfMinimums) != len(FrecuenciasDRTeoricas):
print('NO ANDA BIEN ESTO PAPI, revisalo')
#esto es para establecer un criterio para la fluorescencia relativa
DistanciaFrecuenciaCociente = 15
if NormalizationCriterium==1:
FluoNormDivisor = 1
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
FluoNormDivisor = Fluo[0]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetPlotsofFluovsAngle_8levels(FrequencyOfMinimumsVector, RelativeFluorescenceOfMinimumsVector, u, titadoppler, detuningdoppler, detuningrepump, ventana=0.25, taketheoricalDR=False):
#primero buscamos las frecuencias referencia que se parezcan a las 6:
i = 0
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[0]
FrecuenciasDRTeoricas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
while i < len(FrequencyOfMinimumsVector):
if len(FrequencyOfMinimumsVector[i])==len(FrecuenciasDRTeoricas):
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[i]
print('Cool! Taking the DR identified with any curve')
break
else:
i = i + 1
if i==len(FrequencyOfMinimumsVector):
print('No hay ningun plot con 5 resonancias oscuras. Tomo las teóricas')
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
if taketheoricalDR:
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
Ventana = abs(ventana*(FrecuenciasReferenciaBase[1] - FrecuenciasReferenciaBase[0])) #ventana separadora de resonancias
print('Ventana = ', Ventana)
DarkResonance1Frequency = []
DarkResonance1Fluorescence = []
DarkResonance2Frequency = []
DarkResonance2Fluorescence = []
DarkResonance3Frequency = []
DarkResonance3Fluorescence = []
DarkResonance4Frequency = []
DarkResonance4Fluorescence = []
DarkResonance5Frequency = []
DarkResonance5Fluorescence = []
DarkResonance6Frequency = []
DarkResonance6Fluorescence = []
i = 0
while i < len(FrequencyOfMinimumsVector):
j = 0
FrecuenciasReferencia = [i for i in FrecuenciasReferenciaBase]
while j < len(FrequencyOfMinimumsVector[i]):
if abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[0])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[0])-Ventana):
DarkResonance1Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance1Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[0] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[1])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[1])-Ventana):
DarkResonance2Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance2Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[1] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[2])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[2])-Ventana):
DarkResonance3Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance3Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[2] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[3])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[3])-Ventana):
DarkResonance4Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance4Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[3] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[4])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[4])-Ventana):
DarkResonance5Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance5Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[4] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[5])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[5])-Ventana):
DarkResonance6Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance6Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[5] = 0
else:
#print('Algo anduvo mal, por ahi tenes que cambiar la ventana che')
pass
j = j + 1
if np.count_nonzero(FrecuenciasReferencia) > 0:
if FrecuenciasReferencia[0] != 0:
DarkResonance1Frequency.append(FrecuenciasReferencia[0])
DarkResonance1Fluorescence.append()
if FrecuenciasReferencia[1] != 0:
DarkResonance2Frequency.append(FrecuenciasReferencia[1])
DarkResonance2Fluorescence.append(0)
if FrecuenciasReferencia[2] != 0:
DarkResonance3Frequency.append(FrecuenciasReferencia[2])
DarkResonance3Fluorescence.append(0)
if FrecuenciasReferencia[3] != 0:
DarkResonance4Frequency.append(FrecuenciasReferencia[3])
DarkResonance4Fluorescence.append(0)
if FrecuenciasReferencia[4] != 0:
DarkResonance5Frequency.append(FrecuenciasReferencia[4])
DarkResonance5Fluorescence.append(0)
if FrecuenciasReferencia[5] != 0:
DarkResonance6Frequency.append(FrecuenciasReferencia[5])
DarkResonance6Fluorescence.append(0)
i = i + 1
return DarkResonance1Frequency, DarkResonance1Fluorescence, DarkResonance2Frequency, DarkResonance2Fluorescence, DarkResonance3Frequency, DarkResonance3Fluorescence, DarkResonance4Frequency, DarkResonance4Fluorescence, DarkResonance5Frequency, DarkResonance5Fluorescence, DarkResonance6Frequency, DarkResonance6Fluorescence, FrecuenciasReferenciaBase
def PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
def PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 1 17:58:39 2020
@author: oem
"""
import os
import numpy as np
#os.chdir('/home/oem/Nextcloud/G_liaf/liaf-TrampaAnular/Código General/EIT-CPT/Buenos Aires/Experiment Simulations/CPT scripts/Eight Level 2 repumps')
from threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
import matplotlib.pyplot as plt
import time
from threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
#C:\Users\Usuario\Nextcloud\G_liaf\liaf-TrampaAnular\Código General\EIT-CPT\Buenos Aires\Experiment Simulations\CPT scripts\Eight Level 2 repumps
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
#u = 1e6
u = 33.5e6
B = (u/(2*np.pi))/c
#sg, sp = 0.6, 5 #parámetros de control, saturación del doppler y repump
#rabG, rabP = sg*gPS, sp*gPD #frecuencias de rabi
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
DetDoppler = -36 #42
DetRepumpVec = [DetDoppler+29.6]
Tvec = [0.7] #temperatura en mK
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
#Calculo las resonancias oscuras teóricas
#ResonanciasTeoricas, DRPositivas = CalculoTeoricoDarkResonances_8levels(u/(2*np.pi*1e6), titadoppler, DetDoppler, DetRepump)
#Parametros de la simulacion cpt
center = -45
span = 80
freqMin = center-span*0.5
freqMax = center+span*0.5
""" parametros para tener espectros coherentes
freqMin = -56
freqMax = 14
"""
freqStep = 1e-1
noiseamplitude = 0
RelMinMedido0Vector = []
RelMinMedido1Vector = []
RelMinMedido2Vector = []
RelMinMedido3Vector = []
RelMinMedido4Vector = []
#Sr = np.arange(0, 10, 0.2)
#Sg = np.arange(0.01, 1, 0.05)
#Sp = np.arange(0.1, 6.1, 1)
#Sg = [0.6**2]
#Sp = [2.3**2]
Sg = [1.4]
Sp = [6]
Sr = [11]
i = 0
save = False
showFigures = True
if not showFigures:
plt.ioff()
else:
plt.ion()
fig1, ax1 = plt.subplots()
offsetx = 464
ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o')
run = True
Scale = 730
Offset = 600 #600 para 20k cuentas aprox
MaxCoherenceValue = []
for sg in Sg:
for sp in Sp:
rabG, rabP = sg*gPS, sp*gPD
for Ti in Tvec:
T = Ti*1e-3
for DetRepump in DetRepumpVec:
print(T)
for sr in Sr:
rabR = sr*gPD
#MeasuredFreq, MeasuredFluo = GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
if run:
MeasuredFreq4, MeasuredFluo4 = GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#SmoothFluo = SmoothNoisyCPT(MeasuredFluo, window=9, poly=2)
SmoothFluo4 = MeasuredFluo4
#Scale = max(BestC)/max([100*s for s in SmoothFluo4])
ax1.plot(MeasuredFreq4, [Scale*100*f + Offset for f in SmoothFluo4], label=f'Sr = {sr}')
ax1.axvline(DetDoppler, linestyle='--', linewidth=1)
#if sr != 0:
#ax1.axvline(DetRepump, linestyle='--', linewidth=1)
MaxCoherenceValue.append(np.max(SmoothFluo4))
#print(titaprobe)
ax1.set_xlabel('Detuning Rebombeo (MHz)')
ax1.set_ylabel('Fluorescencia (AU)')
ax1.set_title(f'B: {round(B, 2)} G, Sdop: {round(sg, 2)}, Sp: {round(sp, 2)}, Sr: {round(sr, 2)}, lw: {lw} MHz, T: {Ti} mK')
#ax1.set_ylim(0, 8)
#ax1.axvline(DetDoppler, linestyle='dashed', color='red', linewidth=1)
#ax1.axvline(DetRepump, linestyle='dashed', color='black', linewidth=1)
#ax1.set_title('Pol Doppler y Repump: Sigma+ Sigma-, Pol Probe: PI')
#ax1.legend()
ax1.grid()
print (f'{i+1}/{len(Sg)*len(Sp)}')
i = i + 1
if save:
plt.savefig(f'Mapa_plots_100k_1mk/CPT_SMSM_sdop{round(sg, 2)}_sp{round(sp, 2)}_sr{round(sr, 2)}.jpg')
ax1.legend()
"""
plt.figure()
plt.plot(Sr, MaxCoherenceValue, 'o')
plt.xlabel('Sr')
plt.ylabel('Coherence')
"""
"""
plt.figure()
plt.plot(MeasuredFreq, [100*f for f in SmoothFluo], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.4, 1.8, 0.2))
plt.ylim(0.5, 1.6)
plt.grid()
plt.figure()
plt.plot(MeasuredFreq4, [100*f for f in SmoothFluo4], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.8, 2.4, 0.4))
plt.grid()
"""
#%%
from scipy.optimize import curve_fit
T = 0.5e-3
sg = 0.7
sp = 6
sr = 0
DetDoppler = -14
DetRepump = 0
FitsSp = []
FitsOffset = []
Sg = [0.87]
def FitEIT(freqs, SP, offset):
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(0.87, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
FinalFluo = [f*43000 + 2685 for f in MeasuredFluo]
return FinalFluo
freqs = [f-offsetx+32 for f in FreqsDR]
freqslong = np.arange(min(freqs), max(freqs)+freqs[1]-freqs[0], 0.1*(freqs[1]-freqs[0]))
popt, pcov = curve_fit(FitEIT, freqs, CountsDR, p0=[5, 700], bounds=(0, [10, 1e6]))
FitsSp.append(popt[0])
FitsOffset.append(popt[1])
print(popt)
FittedEIT = FitEIT(freqslong, *popt)
plt.figure()
plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', capsize=2, markersize=2)
plt.plot(freqslong, FitEIT(freqslong, *popt))
plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {T*1e3} mK, detDop: {DetDoppler} MHz')
np.savetxt('CPT_measured.txt', np.transpose([freqs, CountsDR]))
np.savetxt('CPT_fitted.txt', np.transpose([freqslong, FittedEIT]))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 7 22:30:01 2020
@author: nico
"""
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
"""
Scripts para el calculo de la curva CPT
"""
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5, Detp-2*u/5, Detp+2*u/5, Detp+6*u/5) #pagina 26 de Oberst. los lande del calcio son iguales a Bario.
H0 = np.diag(eigenEnergies)
return H0
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de la transición Doppler SP,
rabP es la frecuencia de rabi de la transición repump DP, y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
def Lplusminus(detr, detp, phirepump, titarepump, forma=1):
Hintplus = np.zeros((8, 8), dtype=np.complex_)
Hintminus = np.zeros((8, 8), dtype=np.complex_)
Hintplus[4, 2] = (-1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[5, 2] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[6, 2] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintplus[5, 3] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[6, 3] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[7, 3] = (1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 4] = (-1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 5] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[2, 6] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintminus[3, 5] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[3, 6] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[3, 7] = (1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
if forma==1:
Lplus = np.zeros((64, 64), dtype=np.complex_)
Lminus = np.zeros((64, 64), dtype=np.complex_)
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j==q:
if (k==2 or k==3) and r > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(Hintplus[r,k])
if (r==2 or r==3) and k > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(Hintminus[r,k])
elif r==k:
if (q==2 or q==3) and j > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(- Hintplus[j,q])
if (j==2 or j==3) and q > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(- Hintminus[j,q])
if forma==2:
deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
Lplus = (-1j)*(np.kron(Hintplus, deltaKro) - np.kron(deltaKro, Hintplus))
Lminus = (-1j)*(np.kron(Hintminus, deltaKro) - np.kron(deltaKro, Hintminus))
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
DeltaBar[i, i] = (1j)*(detr - detp)
return np.matrix(Lminus), np.matrix(Lplus), np.matrix(DeltaBar)
def GetL1(Lplus, Lminus, DeltaBar, L0, rabR, nmax):
"""
Devuelve Splus0 y Sminus0
"""
Sp = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*DeltaBar))*np.matrix(Lplus))
Sm = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*DeltaBar))*np.matrix(Lminus))
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
Sp = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 - n*DeltaBar + rabR*(Lminus*np.matrix(Sp))))*np.matrix(Lplus))
Sm = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 + n*DeltaBar + rabR*(Lplus*np.matrix(Sm))))*np.matrix(Lminus))
L1 = 0.5*rabR*(np.matrix(Lminus)*np.matrix(Sp) + np.matrix(Lplus)*np.matrix(Sm))
return L1
def EffectiveL(gPS, gPD, lwg, lwr, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*(lwr + lwp)
Leff[5, 5] = 2*(lwr + lwp)
Leff[6, 6] = 2*(lwr + lwp)
Leff[7, 7] = 2*(lwr + lwp)
return (-0.5j)*Leff
def CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M = np.matrix(np.zeros((64, 64), dtype=np.complex_))
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
factor1 = 1
factor2 = 1
factor3 = 1
factor4 = 1
#M[36, 45] = lwp
M[36,36] = 2*(lwr + factor1*lwp)
M[37,37] = 2*(lwr + factor1*lwp)
M[38,38] = 2*(lwr + factor1*lwp)
M[39,39] = 2*(lwr + factor1*lwp)
M[44,44] = 2*(lwr + factor2*lwp)
M[45,45] = 2*(lwr + factor2*lwp)
M[46,46] = 2*(lwr + factor2*lwp)
M[47,47] = 2*(lwr + factor2*lwp)
M[52,52] = 2*(lwr + factor3*lwp)
M[53,53] = 2*(lwr + factor3*lwp)
M[54,54] = 2*(lwr + factor3*lwp)
M[55,55] = 2*(lwr + factor3*lwp)
M[60,60] = 2*(lwr + factor4*lwp)
M[61,61] = 2*(lwr + factor4*lwp)
M[62,62] = 2*(lwr + factor4*lwp)
M[63,63] = 2*(lwr + factor4*lwp)
return M
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
def FullL_efficient(rabG, rabR, rabP, gPS = 0, gPD = 0, Detg = 0, Detr = 0, Detp = 0, u = 0, lwg = 0, lwr=0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, phirepump=0, titarepump=0, T = 0, alpha = 0):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
#lwr = np.sqrt(lwr**2 + dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)**2)
lwg = np.sqrt(lwg**2 + db**2)
lwr = np.sqrt(lwr**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwr, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe) + CC
Heffdaga = np.matrix(Heff).getH()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M)
nmax = 1
Lminus, Lplus, DeltaBar = Lplusminus(Detr, Detp, phirepump, titarepump)
factor1 = np.exp(1j*0.2*np.pi)
factor2 = np.exp(-1j*0.2*np.pi)
#print(factor)
L1 = GetL1(factor1*Lplus, factor2*Lminus, DeltaBar, L0, rabR, nmax)
Lfull = L0 + L1
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
def CalculoTeoricoDarkResonances(u, titadoppler):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return NegativeDR, PositiveDR
def CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
def CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwr, lwp = lwg*1e6, lwr*1e6, lwp*1e6
rabG = sg*gPS
rabR = sr*gPD
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
coh = 5
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
#Fluo = np.abs(rhovectorized[coh])
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
#%%
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
Frequencyvector, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
NegativeDR, PositiveDR = CalculoTeoricoDarkResonances(u/(2*np.pi*1e6), titadoppler)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
for PDR in PositiveDR:
plt.axvline(Detr+PDR, linestyle='--', linewidth=0.5, color='red')
for NDR in NegativeDR:
plt.axvline(Detg+NDR, linestyle='--', linewidth=0.5, color='blue')
#parametros que andan piola:
"""
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 17 #campo magnetico en gauss
u = c*B
#u = 80e6
sr, sp = 0.53, 4.2
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
rabR, rabP = sr*gPS, sp*gPD
lw = 2*np.pi * 0.33e6
lwr, lwp = lw, lw #ancho de linea de los laseres
dr_spec = - 2*np.pi* 26e6
freqSteps = 500
freqMin = -100e6
freqMax = 100e6
dps = 2*np.pi*np.linspace(freqMin, freqMax, freqSteps)
#dps = [-30e6]
alfar = 90*(np.pi/180)
ex_r, ey_r, ez_r = np.sin(alfar)*np.cos(0), np.sin(alfar)*np.sin(0), np.cos(alfar)
alfap = 90*(np.pi/180)
ex_p, ey_p, ez_p = np.sin(alfap)*np.cos(0), np.sin(alfap)*np.sin(0), np.cos(alfap)
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
# Solo levanto algunos experimentos
Calib_Files = """000012744-UV_Scan_withcalib_Haeffner
000012745-UV_Scan_withcalib_Haeffner
000012749-UV_Scan_withcalib_Haeffner
000012750-UV_Scan_withcalib_Haeffner
000012751-UV_Scan_withcalib_Haeffner
000012752-UV_Scan_withcalib_Haeffner
000012753-UV_Scan_withcalib_Haeffner
000012754-UV_Scan_withcalib_Haeffner
000012755-UV_Scan_withcalib_Haeffner"""
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220503_EspectrosUVnuevos\Data
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#%%
Amps = []
Freqs = []
Counts = []
T_readouts = []
for i, fname in enumerate(Calib_Files.split()):
print(SeeKeys(Calib_Files))
print(i)
print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(list(data['datasets'].keys()))
Amps.append(np.array(data['datasets']['UV_Amplitudes']))
Freqs.append(np.array(data['datasets']['UV_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
T_readouts.append(np.array(data['datasets']['t_readout']))
#def GetBackground(countsper100ms, )
#%%
from scipy.special import jv
def Lorentzian(f, A, x0, gamma, offset):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + offset #40 es el piso de ruido estimado
#primero muestro las meds 0 y 1 que son dos mediciones con potencia UV quizas un poco
#alta pero en la segunda el ion esta un poquito mejor compensado y se ve cómo se afina el espectro
jvec = [0,1]
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 208, 30, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM {round(popt[2],1)} MHz')
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[2])} MHz')
#%%
from scipy.special import jv
from scipy.optimize import curve_fit
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2))
def MicromotionSpectra(det, A, beta, x0):
ftrap=22.1
gamma=37
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+100
i = 1
#print(P)
while i <= 2:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
jvec = [1] #UV_cooling en 90 MHz
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(MicromotionSpectra, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):],p0=[100000,0.1,215], bounds=((0,0,0),(10000000,10,300)))
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Beta: {round(popt[1],2)}')
#%%
from scipy.special import jv
def Lorentzian(f, A, x0, gamma, offset):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + offset #40 es el piso de ruido estimado
#para tres potencias distintas del UV:
jvec = [2,3,4,5]
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 208, 30, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM {round(popt[2],1)} MHz')
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[2])} MHz')
#%%
from scipy.special import jv
from scipy.optimize import curve_fit
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2))
def MicromotionSpectra(det, A, beta, x0, gamma):
ftrap=22.1
#gamma=30
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+100
i = 1
#print(P)
while i <= 2:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
jvec = [6, 7] #6, 7, 8: tres compensaciones distintas. la 8 en realidad el ion se fue un pcoo del pinhole entonces se ve mas chica
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(MicromotionSpectra, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):],p0=[100000,0.1,215, 30], bounds=((0,0,0,0),(10000000,10,300,100)))
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5, label=f'Beta: {round(popt[1],2)}, Gamma: {round(popt[3],1)}')
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt))
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Beta: {round(popt[1],2)}')
\ No newline at end of file
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 2 16:30:09 2020
@author: oem
"""
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
from EITfit.threeLevel_2repumps_linealpol_python_scripts import CPTspectrum8levels, CPTspectrum8levels_fixedRabi
import random
from scipy.signal import savgol_filter as sf
def CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
else:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return [detuningdoppler + dr for dr in NegativeDR], [detuningrepump + dr for dr in PositiveDR]
def GetClosestIndex(Vector, value, tolerance=1e-3):
i = 0
while i<len(Vector):
if abs(Vector[i] - value) < tolerance:
return i
else:
i = i + 1
return GetClosestIndex(Vector, value, tolerance=2*tolerance)
def FindDRFrequencies(Freq, Fluo, TeoDR, entorno=3):
"""
Busca los indices y la frecuencia de los minimos en un entorno cercano al de la DR.
Si no encuentra, devuelve el valor teórico.
"""
IndiceDRteo1, IndiceEntornoinicialDRteo1, IndiceEntornofinalDRteo1 = GetClosestIndex(Freq, TeoDR[0]), GetClosestIndex(Freq, TeoDR[0]-entorno), GetClosestIndex(Freq, TeoDR[0]+entorno)
IndiceDRteo2, IndiceEntornoinicialDRteo2, IndiceEntornofinalDRteo2 = GetClosestIndex(Freq, TeoDR[1]), GetClosestIndex(Freq, TeoDR[1]-entorno), GetClosestIndex(Freq, TeoDR[1]+entorno)
IndiceDRteo3, IndiceEntornoinicialDRteo3, IndiceEntornofinalDRteo3 = GetClosestIndex(Freq, TeoDR[2]), GetClosestIndex(Freq, TeoDR[2]-entorno), GetClosestIndex(Freq, TeoDR[2]+entorno)
IndiceDRteo4, IndiceEntornoinicialDRteo4, IndiceEntornofinalDRteo4 = GetClosestIndex(Freq, TeoDR[3]), GetClosestIndex(Freq, TeoDR[3]-entorno), GetClosestIndex(Freq, TeoDR[3]+entorno)
IndiceDRteo5, IndiceEntornoinicialDRteo5, IndiceEntornofinalDRteo5 = GetClosestIndex(Freq, TeoDR[4]), GetClosestIndex(Freq, TeoDR[4]-entorno), GetClosestIndex(Freq, TeoDR[4]+entorno)
IndiceDRteo6, IndiceEntornoinicialDRteo6, IndiceEntornofinalDRteo6 = GetClosestIndex(Freq, TeoDR[5]), GetClosestIndex(Freq, TeoDR[5]-entorno), GetClosestIndex(Freq, TeoDR[5]+entorno)
EntornoFreqDR1, EntornoFreqDR2 = Freq[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Freq[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFreqDR3, EntornoFreqDR4 = Freq[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Freq[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFreqDR5, EntornoFreqDR6 = Freq[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Freq[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
EntornoFluoDR1, EntornoFluoDR2 = Fluo[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Fluo[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFluoDR3, EntornoFluoDR4 = Fluo[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Fluo[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFluoDR5, EntornoFluoDR6 = Fluo[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Fluo[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
IndiceFluoMinimaEntorno1, IndiceFluoMinimaEntorno2 = argrelextrema(np.array(EntornoFluoDR1), np.less)[0], argrelextrema(np.array(EntornoFluoDR2), np.less)[0]
IndiceFluoMinimaEntorno3, IndiceFluoMinimaEntorno4 = argrelextrema(np.array(EntornoFluoDR3), np.less)[0], argrelextrema(np.array(EntornoFluoDR4), np.less)[0]
IndiceFluoMinimaEntorno5, IndiceFluoMinimaEntorno6 = argrelextrema(np.array(EntornoFluoDR5), np.less)[0], argrelextrema(np.array(EntornoFluoDR6), np.less)[0]
try:
FreqDR1 = EntornoFreqDR1[int(IndiceFluoMinimaEntorno1)]
IndiceDR1 = GetClosestIndex(Freq, FreqDR1)
except:
FreqDR1 = TeoDR[0]
IndiceDR1 = IndiceDRteo1
try:
FreqDR2 = EntornoFreqDR2[int(IndiceFluoMinimaEntorno2)]
IndiceDR2 = GetClosestIndex(Freq, FreqDR2)
except:
FreqDR2 = TeoDR[1]
IndiceDR2 = IndiceDRteo2
try:
FreqDR3 = EntornoFreqDR3[int(IndiceFluoMinimaEntorno3)]
IndiceDR3 = GetClosestIndex(Freq, FreqDR3)
except:
FreqDR3 = TeoDR[2]
IndiceDR3 = IndiceDRteo3
try:
FreqDR4 = EntornoFreqDR4[int(IndiceFluoMinimaEntorno4)]
IndiceDR4 = GetClosestIndex(Freq, FreqDR4)
except:
FreqDR4 = TeoDR[3]
IndiceDR4 = IndiceDRteo4
try:
FreqDR5 = EntornoFreqDR5[int(IndiceFluoMinimaEntorno5)]
IndiceDR5 = GetClosestIndex(Freq, FreqDR5)
except:
FreqDR5 = TeoDR[4]
IndiceDR5 = IndiceDRteo5
try:
FreqDR6 = EntornoFreqDR6[int(IndiceFluoMinimaEntorno6)]
IndiceDR6 = GetClosestIndex(Freq, FreqDR6)
except:
FreqDR6 = TeoDR[5]
IndiceDR6 = IndiceDRteo6
return [IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6], [FreqDR1, FreqDR2, FreqDR3, FreqDR4, FreqDR5, FreqDR6]
def FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=-100, getindices=False):
"""
Toma los indices donde estan las DR y evalua su fluorescencia. Esos indices son minimos locales en un entorno
cercano a las DR teoricas y, si no hay ningun minimo, toma la teorica.
Luego, hace el cociente de esa fluorescencia y un factor de normalización segun NormalizationCriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
4: Deuelve el cociente entre la fluorescencia del minimo y el valor de fluorescencia a detuning 0 MHz
"""
IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6 = IndicesDR[0], IndicesDR[1], IndicesDR[2], IndicesDR[3], IndicesDR[4], IndicesDR[5]
FluorescenceOfMinimums = [Fluo[IndiceDR1], Fluo[IndiceDR2], Fluo[IndiceDR3], Fluo[IndiceDR4], Fluo[IndiceDR5], Fluo[IndiceDR6]]
FrequencyOfMinimums = [Freq[IndiceDR1], Freq[IndiceDR2], Freq[IndiceDR3], Freq[IndiceDR4], Freq[IndiceDR5], Freq[IndiceDR6]]
DistanciaFrecuenciaCociente = 25
if NormalizationCriterium==0:
print('che')
return FrequencyOfMinimums, FluorescenceOfMinimums
if NormalizationCriterium==1:
Fluorescenciacerodetuning = Fluo[GetClosestIndex(Freq, 0)]
Fluorescenciaasintotica = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
return FrequencyOfMinimums, np.array([Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica])
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
indiceizquierda = k
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
indicederecha = l
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
#asintotico
FluoNormDivisor = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
if NormalizationCriterium==4:
#este te tira la fluorescencia de detuning 0
FluoNormDivisor = Fluo[GetClosestIndex(Freq, 0)]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
print('Esto: ', RelativeFluorescenceOfMinimums)
if NormalizationCriterium==2 and getindices==True:
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums, indiceizquierda, indicederecha
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetFinalMaps(MapasDR1, MapasDR2, MapasDR3, MapasDR4, MapasDR5, MapasDR6):
"""
Nota: esto vale para polarizacion del 397 sigma+ + sigma-. Sino hay que cambiar los coeficientes.
La estructura es:
MapasDRi = [MapaMedido_criterio1_DRi, MapaMedido_criterio2_DRi, MapaMedido_criterio3_DRi, MapaMedido_criterio4_DRi]
"""
Mapa1 = MapasDR1[0]
Mapa2pi = np.sqrt(3)*(MapasDR2[1] + MapasDR5[1])
Mapa2smas = np.sqrt(12/2)*MapasDR3[1] + (2/np.sqrt(2))*MapasDR6[1]
Mapa2smenos = (2/np.sqrt(2))*MapasDR1[1] + np.sqrt(12/2)*MapasDR4[1]
Mapa3pi = np.sqrt(3)*(MapasDR2[2] + MapasDR5[2])
Mapa3smas = np.sqrt(12/2)*MapasDR3[2] + (2/np.sqrt(2))*MapasDR6[2]
Mapa3smenos = (2/np.sqrt(2))*MapasDR1[2] + np.sqrt(12/2)*MapasDR4[2]
return Mapa1, [Mapa2pi, Mapa2smas, Mapa2smenos], [Mapa3pi, Mapa3smas, Mapa3smenos]
def CombinateDRwithCG(RelMinMedido1, RelMinMedido2, RelMinMedido3, RelMinMedido4):
Fluo1 = RelMinMedido1[0]
Fluo2pi = np.sqrt(3)*(RelMinMedido2[1] + RelMinMedido2[4])
Fluo2smas = np.sqrt(12/2)*RelMinMedido2[2] + (2/np.sqrt(2))*RelMinMedido2[5]
Fluo2smenos = (2/np.sqrt(2))*RelMinMedido2[0] + np.sqrt(12/2)*RelMinMedido2[3]
Fluo3pi = np.sqrt(3)*(RelMinMedido3[1] + RelMinMedido3[4])
Fluo3smas = np.sqrt(12/2)*RelMinMedido3[2] + (2/np.sqrt(2))*RelMinMedido3[5]
Fluo3smenos = (2/np.sqrt(2))*RelMinMedido3[0] + np.sqrt(12/2)*RelMinMedido3[3]
return Fluo1, [Fluo2pi, Fluo2smas, Fluo2smenos], [Fluo3pi, Fluo3smas, Fluo3smenos]
def IdentifyPolarizationCoincidences(theoricalmap, target, tolerance=1e-1):
"""
Busca en un mapa 2D la presencia de un valor target (medido) con tolerancia tolerance.
Si lo encuentra, pone un 1. Sino, un 0. Al plotear con pcolor se verá
en blanco la zona donde el valor medido se puede hallar.
"""
CoincidenceMatrix = np.zeros((len(theoricalmap), len(theoricalmap[0])))
i = 0
while i<len(theoricalmap):
j = 0
while j<len(theoricalmap[0]):
if abs(theoricalmap[i][j]-target) < tolerance:
CoincidenceMatrix[i][j] = 1
j=j+1
i=i+1
return CoincidenceMatrix
def RetrieveAbsoluteCoincidencesBetweenMaps(MapsVectors):
MatrixSum = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
AbsoluteCoincidencesMatrix = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
MatrixMapsVectors = []
for i in range(len(MapsVectors)):
MatrixMapsVectors.append(np.matrix(MapsVectors[i]))
for i in range(len(MatrixMapsVectors)):
MatrixSum = MatrixSum + MatrixMapsVectors[i]
MaxNumberOfCoincidences = np.max(MatrixSum)
ListMatrixSum = [list(i) for i in list(np.array(MatrixSum))]
for i in range(len(ListMatrixSum)):
for j in range(len(ListMatrixSum[0])):
if ListMatrixSum[i][j] == MaxNumberOfCoincidences:
AbsoluteCoincidencesMatrix[i][j] = 1
return AbsoluteCoincidencesMatrix, MaxNumberOfCoincidences
def MeasureMeanValueOfEstimatedArea(AbsoluteCoincidencesMap, X, Y):
NonZeroIndices = np.nonzero(AbsoluteCoincidencesMap)
Xsum = 0
Xvec = []
Ysum = 0
Yvec = []
N = len(NonZeroIndices[0])
for i in range(N):
Xsum = Xsum + X[NonZeroIndices[1][i]]
Xvec.append(X[NonZeroIndices[1][i]])
Ysum = Ysum + Y[NonZeroIndices[0][i]]
Yvec.append(Y[NonZeroIndices[0][i]])
Xaverage = Xsum/N
Yaverage = Ysum/N
Xspread = np.std(Xvec)
Yspread = np.std(Yvec)
return Xaverage, Yaverage, N, Xspread, Yspread
def MeasureRelativeFluorescenceFromCPT(Freq, Fluo, u, titadoppler, detuningrepump, detuningdoppler, frefasint=-100, entorno=3):
ResonanciasTeoricas, ResonanciasPositivas = CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)
IndicesDR, FreqsDR = FindDRFrequencies(Freq, Fluo, ResonanciasTeoricas, entorno=entorno)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums0 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=0, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums1 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums2, indiceizquierda, indicederecha = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=2, frecuenciareferenciacriterioasintotico=frefasint, getindices=True)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums3 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=3, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums4 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=4, frecuenciareferenciacriterioasintotico=frefasint)
print('hola')
print(RelativeFluorescenceOfMinimums0)
return RelativeFluorescenceOfMinimums0, RelativeFluorescenceOfMinimums1, RelativeFluorescenceOfMinimums2, RelativeFluorescenceOfMinimums3, RelativeFluorescenceOfMinimums4, IndicesDR, [indiceizquierda, indicederecha]
def GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fit(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, min(freqs), max(freqs) + freqs[1]-freqs[0], freqs[1]-freqs[0], plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def AddNoiseToCPT(Fluo, noisefactor):
return [f+noisefactor*(2*random.random()-1) for f in Fluo]
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
def GetMinimaInfo(Freq, Fluo, u, titadoppler, detuningdoppler, detuningrepump, MinimumCriterium=2, NormalizationCriterium=1):
"""
FUNCION VIEJA
Esta funcion devuelve valores de frecuencias y fluorescencia relativa de los minimos.
Minimumcriterion:
1: Saca los minimos con funcion argelextrema
2: Directamente con las frecuencias teoricas busca las fluorescencias
Normalizationcriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
"""
FluorescenceOfMaximum = max(Fluo)
FrequencyOfMaximum = Freq[Fluo.index(FluorescenceOfMaximum)]
#criterio para encontrar los minimos
#criterio usando minimos de la fluorescencia calculados con la curva
if MinimumCriterium == 1:
LocationOfMinimums = argrelextrema(np.array(Fluo), np.less)[0]
FluorescenceOfMinimums = np.array([Fluo[i] for i in LocationOfMinimums])
FrequencyOfMinimums = np.array([Freq[j] for j in LocationOfMinimums])
#criterio con las DR teoricas
if MinimumCriterium == 2:
FrecuenciasDRTeoricas, FrecuenciasDRTeoricasPositivas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
FrequencyOfMinimums = []
FluorescenceOfMinimums =[]
print(FrecuenciasDRTeoricas)
k=0
ventanita = 0.001
while k < len(Freq):
if Freq[k] < FrecuenciasDRTeoricas[0] + ventanita and Freq[k] > FrecuenciasDRTeoricas[0] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[1] + ventanita and Freq[k] > FrecuenciasDRTeoricas[1] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[2] + ventanita and Freq[k] > FrecuenciasDRTeoricas[2] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[3] + ventanita and Freq[k] > FrecuenciasDRTeoricas[3] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[4] + ventanita and Freq[k] > FrecuenciasDRTeoricas[4] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[5] + ventanita and Freq[k] > FrecuenciasDRTeoricas[5] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
k = k + 1
print(FrequencyOfMinimums)
if len(FrequencyOfMinimums) != len(FrecuenciasDRTeoricas):
print('NO ANDA BIEN ESTO PAPI, revisalo')
#esto es para establecer un criterio para la fluorescencia relativa
DistanciaFrecuenciaCociente = 15
if NormalizationCriterium==1:
FluoNormDivisor = 1
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
FluoNormDivisor = Fluo[0]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetPlotsofFluovsAngle_8levels(FrequencyOfMinimumsVector, RelativeFluorescenceOfMinimumsVector, u, titadoppler, detuningdoppler, detuningrepump, ventana=0.25, taketheoricalDR=False):
#primero buscamos las frecuencias referencia que se parezcan a las 6:
i = 0
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[0]
FrecuenciasDRTeoricas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
while i < len(FrequencyOfMinimumsVector):
if len(FrequencyOfMinimumsVector[i])==len(FrecuenciasDRTeoricas):
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[i]
print('Cool! Taking the DR identified with any curve')
break
else:
i = i + 1
if i==len(FrequencyOfMinimumsVector):
print('No hay ningun plot con 5 resonancias oscuras. Tomo las teóricas')
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
if taketheoricalDR:
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
Ventana = abs(ventana*(FrecuenciasReferenciaBase[1] - FrecuenciasReferenciaBase[0])) #ventana separadora de resonancias
print('Ventana = ', Ventana)
DarkResonance1Frequency = []
DarkResonance1Fluorescence = []
DarkResonance2Frequency = []
DarkResonance2Fluorescence = []
DarkResonance3Frequency = []
DarkResonance3Fluorescence = []
DarkResonance4Frequency = []
DarkResonance4Fluorescence = []
DarkResonance5Frequency = []
DarkResonance5Fluorescence = []
DarkResonance6Frequency = []
DarkResonance6Fluorescence = []
i = 0
while i < len(FrequencyOfMinimumsVector):
j = 0
FrecuenciasReferencia = [i for i in FrecuenciasReferenciaBase]
while j < len(FrequencyOfMinimumsVector[i]):
if abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[0])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[0])-Ventana):
DarkResonance1Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance1Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[0] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[1])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[1])-Ventana):
DarkResonance2Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance2Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[1] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[2])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[2])-Ventana):
DarkResonance3Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance3Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[2] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[3])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[3])-Ventana):
DarkResonance4Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance4Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[3] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[4])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[4])-Ventana):
DarkResonance5Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance5Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[4] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[5])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[5])-Ventana):
DarkResonance6Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance6Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[5] = 0
else:
#print('Algo anduvo mal, por ahi tenes que cambiar la ventana che')
pass
j = j + 1
if np.count_nonzero(FrecuenciasReferencia) > 0:
if FrecuenciasReferencia[0] != 0:
DarkResonance1Frequency.append(FrecuenciasReferencia[0])
DarkResonance1Fluorescence.append()
if FrecuenciasReferencia[1] != 0:
DarkResonance2Frequency.append(FrecuenciasReferencia[1])
DarkResonance2Fluorescence.append(0)
if FrecuenciasReferencia[2] != 0:
DarkResonance3Frequency.append(FrecuenciasReferencia[2])
DarkResonance3Fluorescence.append(0)
if FrecuenciasReferencia[3] != 0:
DarkResonance4Frequency.append(FrecuenciasReferencia[3])
DarkResonance4Fluorescence.append(0)
if FrecuenciasReferencia[4] != 0:
DarkResonance5Frequency.append(FrecuenciasReferencia[4])
DarkResonance5Fluorescence.append(0)
if FrecuenciasReferencia[5] != 0:
DarkResonance6Frequency.append(FrecuenciasReferencia[5])
DarkResonance6Fluorescence.append(0)
i = i + 1
return DarkResonance1Frequency, DarkResonance1Fluorescence, DarkResonance2Frequency, DarkResonance2Fluorescence, DarkResonance3Frequency, DarkResonance3Fluorescence, DarkResonance4Frequency, DarkResonance4Fluorescence, DarkResonance5Frequency, DarkResonance5Fluorescence, DarkResonance6Frequency, DarkResonance6Fluorescence, FrecuenciasReferenciaBase
def PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
def PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 1 17:58:39 2020
@author: oem
"""
import os
import numpy as np
#os.chdir('/home/oem/Nextcloud/G_liaf/liaf-TrampaAnular/Código General/EIT-CPT/Buenos Aires/Experiment Simulations/CPT scripts/Eight Level 2 repumps')
from threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
import matplotlib.pyplot as plt
import time
from threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
#C:\Users\Usuario\Nextcloud\G_liaf\liaf-TrampaAnular\Código General\EIT-CPT\Buenos Aires\Experiment Simulations\CPT scripts\Eight Level 2 repumps
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
#u = 1e6
u = 33.5e6
B = (u/(2*np.pi))/c
#sg, sp = 0.6, 5 #parámetros de control, saturación del doppler y repump
#rabG, rabP = sg*gPS, sp*gPD #frecuencias de rabi
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
DetDoppler = -36 #42
DetRepumpVec = [DetDoppler+29.6]
Tvec = [0.7] #temperatura en mK
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
#Calculo las resonancias oscuras teóricas
#ResonanciasTeoricas, DRPositivas = CalculoTeoricoDarkResonances_8levels(u/(2*np.pi*1e6), titadoppler, DetDoppler, DetRepump)
#Parametros de la simulacion cpt
center = -45
span = 80
freqMin = center-span*0.5
freqMax = center+span*0.5
""" parametros para tener espectros coherentes
freqMin = -56
freqMax = 14
"""
freqStep = 1e-1
noiseamplitude = 0
RelMinMedido0Vector = []
RelMinMedido1Vector = []
RelMinMedido2Vector = []
RelMinMedido3Vector = []
RelMinMedido4Vector = []
#Sr = np.arange(0, 10, 0.2)
#Sg = np.arange(0.01, 1, 0.05)
#Sp = np.arange(0.1, 6.1, 1)
#Sg = [0.6**2]
#Sp = [2.3**2]
Sg = [1.4]
Sp = [6]
Sr = [11]
i = 0
save = False
showFigures = True
if not showFigures:
plt.ioff()
else:
plt.ion()
fig1, ax1 = plt.subplots()
offsetx = 464
ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o')
run = True
Scale = 730
Offset = 600 #600 para 20k cuentas aprox
MaxCoherenceValue = []
for sg in Sg:
for sp in Sp:
rabG, rabP = sg*gPS, sp*gPD
for Ti in Tvec:
T = Ti*1e-3
for DetRepump in DetRepumpVec:
print(T)
for sr in Sr:
rabR = sr*gPD
#MeasuredFreq, MeasuredFluo = GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
if run:
MeasuredFreq4, MeasuredFluo4 = GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#SmoothFluo = SmoothNoisyCPT(MeasuredFluo, window=9, poly=2)
SmoothFluo4 = MeasuredFluo4
#Scale = max(BestC)/max([100*s for s in SmoothFluo4])
ax1.plot(MeasuredFreq4, [Scale*100*f + Offset for f in SmoothFluo4], label=f'Sr = {sr}')
ax1.axvline(DetDoppler, linestyle='--', linewidth=1)
#if sr != 0:
#ax1.axvline(DetRepump, linestyle='--', linewidth=1)
MaxCoherenceValue.append(np.max(SmoothFluo4))
#print(titaprobe)
ax1.set_xlabel('Detuning Rebombeo (MHz)')
ax1.set_ylabel('Fluorescencia (AU)')
ax1.set_title(f'B: {round(B, 2)} G, Sdop: {round(sg, 2)}, Sp: {round(sp, 2)}, Sr: {round(sr, 2)}, lw: {lw} MHz, T: {Ti} mK')
#ax1.set_ylim(0, 8)
#ax1.axvline(DetDoppler, linestyle='dashed', color='red', linewidth=1)
#ax1.axvline(DetRepump, linestyle='dashed', color='black', linewidth=1)
#ax1.set_title('Pol Doppler y Repump: Sigma+ Sigma-, Pol Probe: PI')
#ax1.legend()
ax1.grid()
print (f'{i+1}/{len(Sg)*len(Sp)}')
i = i + 1
if save:
plt.savefig(f'Mapa_plots_100k_1mk/CPT_SMSM_sdop{round(sg, 2)}_sp{round(sp, 2)}_sr{round(sr, 2)}.jpg')
ax1.legend()
"""
plt.figure()
plt.plot(Sr, MaxCoherenceValue, 'o')
plt.xlabel('Sr')
plt.ylabel('Coherence')
"""
"""
plt.figure()
plt.plot(MeasuredFreq, [100*f for f in SmoothFluo], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.4, 1.8, 0.2))
plt.ylim(0.5, 1.6)
plt.grid()
plt.figure()
plt.plot(MeasuredFreq4, [100*f for f in SmoothFluo4], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.8, 2.4, 0.4))
plt.grid()
"""
#%%
from scipy.optimize import curve_fit
T = 0.5e-3
sg = 0.7
sp = 6
sr = 0
DetDoppler = -14
DetRepump = 0
FitsSp = []
FitsOffset = []
Sg = [0.87]
def FitEIT(freqs, SP, offset):
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(0.87, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
FinalFluo = [f*43000 + 2685 for f in MeasuredFluo]
return FinalFluo
freqs = [f-offsetx+32 for f in FreqsDR]
freqslong = np.arange(min(freqs), max(freqs)+freqs[1]-freqs[0], 0.1*(freqs[1]-freqs[0]))
popt, pcov = curve_fit(FitEIT, freqs, CountsDR, p0=[5, 700], bounds=(0, [10, 1e6]))
FitsSp.append(popt[0])
FitsOffset.append(popt[1])
print(popt)
FittedEIT = FitEIT(freqslong, *popt)
plt.figure()
plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', capsize=2, markersize=2)
plt.plot(freqslong, FitEIT(freqslong, *popt))
plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {T*1e3} mK, detDop: {DetDoppler} MHz')
np.savetxt('CPT_measured.txt', np.transpose([freqs, CountsDR]))
np.savetxt('CPT_fitted.txt', np.transpose([freqslong, FittedEIT]))
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 7 22:30:01 2020
@author: nico
"""
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
"""
Scripts para el calculo de la curva CPT
"""
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5, Detp-2*u/5, Detp+2*u/5, Detp+6*u/5) #pagina 26 de Oberst. los lande del calcio son iguales a Bario.
H0 = np.diag(eigenEnergies)
return H0
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de la transición Doppler SP,
rabP es la frecuencia de rabi de la transición repump DP, y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
def Lplusminus(detr, detp, phirepump, titarepump, forma=1):
Hintplus = np.zeros((8, 8), dtype=np.complex_)
Hintminus = np.zeros((8, 8), dtype=np.complex_)
Hintplus[4, 2] = (-1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[5, 2] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[6, 2] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintplus[5, 3] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[6, 3] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[7, 3] = (1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 4] = (-1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 5] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[2, 6] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintminus[3, 5] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[3, 6] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[3, 7] = (1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
if forma==1:
Lplus = np.zeros((64, 64), dtype=np.complex_)
Lminus = np.zeros((64, 64), dtype=np.complex_)
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j==q:
if (k==2 or k==3) and r > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(Hintplus[r,k])
if (r==2 or r==3) and k > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(Hintminus[r,k])
elif r==k:
if (q==2 or q==3) and j > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(- Hintplus[j,q])
if (j==2 or j==3) and q > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(- Hintminus[j,q])
if forma==2:
deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
Lplus = (-1j)*(np.kron(Hintplus, deltaKro) - np.kron(deltaKro, Hintplus))
Lminus = (-1j)*(np.kron(Hintminus, deltaKro) - np.kron(deltaKro, Hintminus))
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
DeltaBar[i, i] = (1j)*(detr - detp)
return np.matrix(Lminus), np.matrix(Lplus), np.matrix(DeltaBar)
def GetL1(Lplus, Lminus, DeltaBar, L0, rabR, nmax):
"""
Devuelve Splus0 y Sminus0
"""
Sp = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*DeltaBar))*np.matrix(Lplus))
Sm = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*DeltaBar))*np.matrix(Lminus))
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
Sp = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 - n*DeltaBar + rabR*(Lminus*np.matrix(Sp))))*np.matrix(Lplus))
Sm = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 + n*DeltaBar + rabR*(Lplus*np.matrix(Sm))))*np.matrix(Lminus))
L1 = 0.5*rabR*(np.matrix(Lminus)*np.matrix(Sp) + np.matrix(Lplus)*np.matrix(Sm))
return L1
def EffectiveL(gPS, gPD, lwg, lwr, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*(lwr + lwp)
Leff[5, 5] = 2*(lwr + lwp)
Leff[6, 6] = 2*(lwr + lwp)
Leff[7, 7] = 2*(lwr + lwp)
return (-0.5j)*Leff
def CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M = np.matrix(np.zeros((64, 64), dtype=np.complex_))
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
factor1 = 1
factor2 = 1
factor3 = 1
factor4 = 1
#M[36, 45] = lwp
M[36,36] = 2*(lwr + factor1*lwp)
M[37,37] = 2*(lwr + factor1*lwp)
M[38,38] = 2*(lwr + factor1*lwp)
M[39,39] = 2*(lwr + factor1*lwp)
M[44,44] = 2*(lwr + factor2*lwp)
M[45,45] = 2*(lwr + factor2*lwp)
M[46,46] = 2*(lwr + factor2*lwp)
M[47,47] = 2*(lwr + factor2*lwp)
M[52,52] = 2*(lwr + factor3*lwp)
M[53,53] = 2*(lwr + factor3*lwp)
M[54,54] = 2*(lwr + factor3*lwp)
M[55,55] = 2*(lwr + factor3*lwp)
M[60,60] = 2*(lwr + factor4*lwp)
M[61,61] = 2*(lwr + factor4*lwp)
M[62,62] = 2*(lwr + factor4*lwp)
M[63,63] = 2*(lwr + factor4*lwp)
return M
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
def FullL_efficient(rabG, rabR, rabP, gPS = 0, gPD = 0, Detg = 0, Detr = 0, Detp = 0, u = 0, lwg = 0, lwr=0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, phirepump=0, titarepump=0, T = 0, alpha = 0):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
#lwr = np.sqrt(lwr**2 + dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)**2)
lwg = np.sqrt(lwg**2 + db**2)
lwr = np.sqrt(lwr**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwr, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe) + CC
Heffdaga = np.matrix(Heff).getH()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp)
L0 = np.array(np.matrix(Lfullpartial) + M)
nmax = 1
Lminus, Lplus, DeltaBar = Lplusminus(Detr, Detp, phirepump, titarepump)
factor1 = np.exp(1j*0.2*np.pi)
factor2 = np.exp(-1j*0.2*np.pi)
#print(factor)
L1 = GetL1(factor1*Lplus, factor2*Lminus, DeltaBar, L0, rabR, nmax)
Lfull = L0 + L1
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
def CalculoTeoricoDarkResonances(u, titadoppler):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return NegativeDR, PositiveDR
def CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
def CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwr, lwp = lwg*1e6, lwr*1e6, lwp*1e6
rabG = sg*gPS
rabR = sr*gPD
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
if solvemode == 1:
coh = 5
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
#Fluo = np.abs(rhovectorized[coh])
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
if solvemode == 2:
Linv = np.linalg.inv(L)
rhovectorized = [Linv[j][0] for j in range(len(Linv))]
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
#%%
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
Frequencyvector, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
NegativeDR, PositiveDR = CalculoTeoricoDarkResonances(u/(2*np.pi*1e6), titadoppler)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
for PDR in PositiveDR:
plt.axvline(Detr+PDR, linestyle='--', linewidth=0.5, color='red')
for NDR in NegativeDR:
plt.axvline(Detg+NDR, linestyle='--', linewidth=0.5, color='blue')
#parametros que andan piola:
"""
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 17 #campo magnetico en gauss
u = c*B
#u = 80e6
sr, sp = 0.53, 4.2
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
rabR, rabP = sr*gPS, sp*gPD
lw = 2*np.pi * 0.33e6
lwr, lwp = lw, lw #ancho de linea de los laseres
dr_spec = - 2*np.pi* 26e6
freqSteps = 500
freqMin = -100e6
freqMax = 100e6
dps = 2*np.pi*np.linspace(freqMin, freqMax, freqSteps)
#dps = [-30e6]
alfar = 90*(np.pi/180)
ex_r, ey_r, ez_r = np.sin(alfar)*np.cos(0), np.sin(alfar)*np.sin(0), np.cos(alfar)
alfap = 90*(np.pi/180)
ex_p, ey_p, ez_p = np.sin(alfap)*np.cos(0), np.sin(alfap)*np.sin(0), np.cos(alfap)
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230707_MotionalSpectrum_v2/Data/')
MOTIONAL_FILES = """
000013002-AD9910RAM_andor
000013003-AD9910RAM_andor
000013004-AD9910RAM_andor
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(MOTIONAL_FILES))
#%%
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts_roi1 = []
Counts_roi2 = []
RealFreqs = []
IR1_amp_vec = []
for i, fname in enumerate(MOTIONAL_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
RealFreqs.append(np.array(data['datasets']['real_freq']))
Counts_roi1.append(np.array(data['datasets']['counts_roi1']))
Counts_roi2.append(np.array(data['datasets']['counts_roi2']))
IR1_amp_vec.append(np.array(data['datasets']['IR1_amp']))
#%%
"""
Ploteo una curva para buscar su minimo
"""
jvec = [0,1,2]
plt.figure()
i = 0
kmin = 106
for j in jvec:
plt.errorbar([1*f*1e-3 for f in RealFreqs[j]], Counts_roi1[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label=f'IR1_amp: {IR1_amp[j]}')
#plt.plot([1*f*1e-3 for f in RealFreqs[j]][kmin], Counts[j][kmin], 'o', markersize=15)
i = i + 1
plt.xlabel('Frecuencia (kHz)')
plt.ylabel('counts')
#plt.xlim(782,787)
#plt.ylim(2000,5000)
plt.grid()
plt.legend(loc='upper left')
#%%
"""
Ploteo las curvas de referencia
"""
jvec = [0, 1, 2, 3, 8]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([1*f*1e-3 for f in RealFreqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label=f"Pot: {Potencias[j]} uW")
i = i + 1
plt.xlabel('Frecuencia (kHz)')
plt.ylabel('counts')
#plt.xlim(782,787)
plt.ylim(2000,5000)
plt.grid()
plt.legend(loc='upper left')
#%%
"""
Busco el cociente entre el minimo y el maximo
"""
kmins = [106, 106, 106, 106, 110, 110, 110, 112, 108]
minabs = np.min(Counts[2])
MinimosFluos = []
MaximosFluos = []
CocientesFluos = []
ErrorCocientesFluos = []
for m in range(9):
mini = Counts[m][kmins[m]]-minabs
maxi = Counts[m][0]-minabs
MinimosFluos.append(mini)
MaximosFluos.append(maxi)
CocientesFluos.append(mini/maxi)
ErrorCocientesFluos.append((mini/maxi)*(np.sqrt(mini)/mini + np.sqrt(maxi)/maxi))
plt.figure()
plt.errorbar(PotenciasUsadas, CocientesFluos, yerr=ErrorCocientesFluos, fmt='o', capsize=5, markersize=15)
plt.axhline(1)
plt.xlabel('Potencia IR (uW)')
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment