RDS_piezoazimut.py 8.54 KB
Newer Older
Nicolas Nunez Barreto's avatar
Nicolas Nunez Barreto committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230817_RotationalDopplerShift_v5/Data')


"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion +2/+2 y +2/-2 (usando pentaprisma)

La idea es que el ion este en distintos puntos del haz a la misma distancia
del centro y ver como depende la profunduidad de la resonancia con el angulo
"""

def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return idx


def Split(array,n):
    length=len(array)/n
    splitlist = []
    jj = 0
    while jj<length:
        partial = []
        ii = 0
        while ii < n:
            partial.append(array[jj*n+ii])
            ii = ii + 1
        splitlist.append(partial)
        jj = jj + 1
    return splitlist


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))


PiezoAzCounts = []
PiezoAzFrequencies = []

PIEZOAZ_FILES = np.arange(984, 999+1,1)

for i in PIEZOAZ_FILES:
    #print(str(i) + ' - ' + fname)
    data = h5py.File(f'VaryingBeamlocation/Azimut/000014{i}-IR_Scan_withcal_optimized'+'.h5', 'r')
    PiezoAzCounts.append(np.array(data['datasets']['counts_spectrum']))
    PiezoAzFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))


def ErrorDRdepth(p, f, b):
    ep = np.sqrt(p)
    ef = np.sqrt(f)
    eb = np.sqrt(b)
    derivadap = 1/((f-b)**2)
    derivadaf = ((p-b)/((f-b)**2))**2
    derivadab = ((p-f)/((f-b)**2))**2
    return 2*np.sqrt(derivadap*ep*ep + derivadaf*ef*ef + derivadab*eb*eb)

def Lorentzian( x, A, B, x0, gam ):
    return A * gam**2 / ( gam**2 + ( x - x0 )**2) + B

def SinFit(ang,A,B,w,phi):
    return A*np.sin(2*np.pi*ang*w*np.pi/180 + phi) + B

#%%
"""
Ahora voy a intentar ajustarlas con una lorentziana que es mejor
"""
import seaborn as sns
"""
Resonancias DD configuracion +2/-2 colineal variando la ubicacion del ion en los haces

Moviendo verticalmente el haz
"""



palette = sns.color_palette("tab10")

pmlocmedvec = np.arange(0,len(PIEZOAZ_FILES),1)


#pmlocmedvec = [14]
FullCurve = True

Angles = np.arange(0,360,22.5)


plt.figure()

#bkg = np.min(PiezoVerCounts[5])
bkg = 120


pmdepthsdraz=[]
errorpmdepthsdraz=[]

Intensityaz = []
errorIntensityaz = []

jj=0
for med in pmlocmedvec:

    Freqs = [2*f*1e-6 for f in PiezoAzFrequencies[med][1:]]
    Counts = [c for c in PiezoAzCounts[med][1:]]

    popt, pcov = curve_fit(Lorentzian, Freqs, Counts, p0=(-200,2100,435.8,0.05), bounds=((-10000,0,435.5,0),(0,1e4, 436.1, 1)))


    if med==11:
        pmdepthsdraz.append(1-(np.min(Counts[0:95])-bkg)/(popt[1]-bkg))
        errorpmdepthsdraz.append(ErrorDRdepth(np.min(Lorentzian(Freqs,*popt)),popt[1], bkg))
        
    else:
        pmdepthsdraz.append(1-(np.min(Lorentzian(Freqs,*popt))-bkg)/(popt[1]-bkg))
        errorpmdepthsdraz.append(ErrorDRdepth(np.min(Lorentzian(Freqs,*popt)),popt[1], bkg))
        
    Intens = popt[1]
    
    Intensityaz.append(Intens)
    # errorIntensity.append(2*np.sqrt(np.mean(Piezo1Counts[med][1:][0:20]))+np.sqrt(bkg))
        
    
    if med not in [800]:
        plt.plot([2*f*1e-6 for f in PiezoAzFrequencies[med][1:]], [c for c in PiezoAzCounts[med][1:]], '-o', markersize=2, alpha=0.7)
        plt.plot(Freqs,Lorentzian(Freqs,*popt))
    
    jj=jj+1
# plt.xlabel('Frecuencia (MHz)')
# plt.ylabel('Counts')
#plt.xlim(435.2, 436.5)
plt.grid()
# plt.legend()
# #plt.title('Espectros para distintas geometrías')

popt, pcov = curve_fit(SinFit, Angles, pmdepthsdraz, p0=(1,0.3,0.2,0.2))

print('')

print(popt)

AnglesLong = np.arange(-10,370,1)

if FullCurve:
    plt.figure()
    plt.errorbar(Angles, [p for p in pmdepthsdraz], yerr=errorpmdepthsdraz, color='violet', fmt='o', capsize=3, markersize=8, zorder=0)
    plt.plot(AnglesLong,SinFit(AnglesLong,*popt), color='indigo', linewidth=4)
    
    indang = find_nearest(SinFit(AnglesLong,*popt), np.min(SinFit(AnglesLong,*popt)))
    plt.axvline(AnglesLong[indang])
    plt.xlabel('Azimuthal angle (°)')
    plt.ylabel('DR Relative depth')
    #plt.xticks([1,2,3,4,5])
    #plt.xlim(200,3200)
    #plt.ylim(-0.1,1.1)
    plt.grid()
    #plt.axvline(3, color='salmon')
    plt.legend()

#%%
"""
Ahora voy a intentar ajustarlas con una lorentziana que es mejor
"""
import seaborn as sns
"""
Resonancias DD configuracion +2/-2 colineal variando la ubicacion del ion en los haces

Moviendo diagonalmente el haz
"""



palette = sns.color_palette("tab10")

pmlocmedvec = np.arange(0,len(PIEZODIAG_FILES),1)


#pmlocmedvec = [0,1]


plt.figure()

bkg = np.min(PiezoDiagCounts[5])

pmdepthsdrdiag=[]
errorpmdepthsdrdiag=[]

Intensitydiag = []
errorIntensitydiag = []

jj=0
for med in pmlocmedvec:

    Freqs = [2*f*1e-6 for f in PiezoDiagFrequencies[med][1:]]
    Counts = [c for c in PiezoDiagCounts[med][1:]]

    if med==2:
        Freqs = Freqs[1:-30]
        Counts = Counts[1:-30]
        popt, pcov = curve_fit(Lorentzian, Freqs, Counts, p0=(-200,2100,435.8,0.05), bounds=((-10000,0,435.5,0),(0,1e4, 436.1, 1)))
    elif med==1:
        Freqs = Freqs[10:-30]
        Counts = Counts[10:-30]
        popt, pcov = curve_fit(Lorentzian, Freqs, Counts, p0=(-200,2100,435.8,0.05), bounds=((-10000,0,435.7,0),(0,1e4, 436.1, 1)))
 
    elif med==5:
        Freqs = Freqs[10:-55]+Freqs[-30:-1]
        Counts = Counts[10:-55]+Counts[-30:-1]
        popt, pcov = curve_fit(Lorentzian, Freqs, Counts, p0=(-200,2100,435.8,0.05), bounds=((-10000,0,435.5,0),(0,1e4, 436.1, 1)))
        
    else:
        popt, pcov = curve_fit(Lorentzian, Freqs, Counts, p0=(-200,2100,435.8,0.05), bounds=((-10000,0,435.5,0),(0,1e4, 436.1, 1)))

    pmdepthsdrdiag.append(1-(np.min(Lorentzian(Freqs,*popt))-bkg)/(popt[1]-bkg))
    errorpmdepthsdrdiag.append(ErrorDRdepth(np.min(Lorentzian(Freqs,*popt)),popt[1], bkg))
        
    Intens = popt[1]
    
    Intensitydiag.append(Intens)
    # errorIntensity.append(2*np.sqrt(np.mean(Piezo1Counts[med][1:][0:20]))+np.sqrt(bkg))
        
    
    if med not in [800]:
        plt.plot([2*f*1e-6 for f in PiezoDiagFrequencies[med][1:]], [c for c in PiezoDiagCounts[med][1:]], '-o', markersize=2, alpha=0.7)
        plt.plot(Freqs,Lorentzian(Freqs,*popt))
    
    jj=jj+1
# plt.xlabel('Frecuencia (MHz)')
# plt.ylabel('Counts')
#plt.xlim(435.2, 436.5)
plt.grid()
# plt.legend()
# #plt.title('Espectros para distintas geometrías')


plt.figure()
plt.plot(np.arange(0,len(Intensitydiag),1), [i/np.max(Intensitydiag) for i in Intensitydiag], '-o',markersize=8)
plt.plot(np.arange(0,len(Intensitydiag),1), [p for p in pmdepthsdrdiag], 'o',markersize=8)
plt.xlabel('Ion position')
plt.ylabel('Intensity / DR Relative depth')
#plt.xticks([1,2,3,4,5])
#plt.xlim(200,3200)
plt.ylim(-0.1,1.1)
plt.grid()
#plt.axvline(3, color='salmon')
plt.legend()


#%%

"""
Ploteo en conjunto. La horizontal sale de RDS_piezo.py
"""
cap=3

plt.figure()
plt.plot(np.arange(0,len(Intensitydiag),1), [i/np.max(Intensitydiag) for i in Intensitydiag], '-o',markersize=8)
#plt.plot(np.arange(0,len(Intensitydiag),1), [p for p in pmdepthsdrdiag], 'o',markersize=8, label='Diagonal')
plt.errorbar(np.arange(0,len(Intensitydiag),1), [p for p in pmdepthsdrdiag], yerr=errorpmdepthsdrdiag, fmt='o',capsize=cap,markersize=8, label='Diagonal')


#plt.plot(np.arange(0,len(Intensityver),1), [i/np.max(Intensityver) for i in Intensityver], '-o',markersize=8)
#plt.plot(np.arange(0,len(Intensityver),1), [p for p in pmdepthsdrver], 'o',markersize=8, label='Vertical')
plt.errorbar(np.arange(0,len(Intensityver),1), [p for p in pmdepthsdrver], yerr=errorpmdepthsdrver, fmt='o', capsize=cap,markersize=8, label='Vertical')


scale = 1.6

#plt.plot([s*scale for s in np.arange(16,len(Intensity),1)-16], [i/np.max(Intensity) for i in Intensity[16:]], '-o',markersize=8)
#plt.plot([s*scale for s in np.arange(16,len(Intensity),1)-16], [p for p in pmdepthsdr[16:]], 'o',markersize=8, label='Horizontal')
plt.errorbar([s*scale for s in np.arange(16,len(Intensity),1)-16], [p for p in pmdepthsdr[16:]], yerr=errorpmdepthsdr[16:], fmt='o', capsize=cap,markersize=8, label='Horizontal')


plt.xlabel('Ion position')
plt.ylabel('Intensity / DR Relative depth')
#plt.xticks([1,2,3,4,5])
plt.xlim(-1,15)
plt.ylim(-0.1,1.1)
plt.grid()
#plt.axvline(3, color='salmon')
plt.legend()