CPT_plotter_20230421.py 12.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate

#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras

#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data

os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230421_CPTconmicromocion/Data/')

CPT_FILES = """000011071-IR_Scan_withcal_optimized
000011072-IR_Scan_withcal_optimized
000011073-IR_Scan_withcal_optimized
""" 


def SeeKeys(files):
    for i, fname in enumerate(files.split()):
        data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
        print(fname)
        print(list(data['datasets'].keys()))

print(SeeKeys(CPT_FILES))

#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data

Counts = []
Freqs = []

AmpTisa = []
UVCPTAmp = []
No_measures = []

for i, fname in enumerate(CPT_FILES.split()):
    print(str(i) + ' - ' + fname)
    #print(fname)
    data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'

    # Aca hago algo repugnante para poder levantar los strings que dejamos
    # que además tenian un error de tipeo al final. Esto no deberá ser necesario
    # cuando se solucione el error este del guardado.
    Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
    Counts.append(np.array(data['datasets']['counts_spectrum']))
    #AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
    UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
    No_measures.append(np.array(data['datasets']['no_measures']))


#%%

"""
Ploteo la cpt de referencia / plotting the reference CPT
"""

jvec = [0]

plt.figure()
i = 0
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()

#%%

"""
Intento mergear 0 1 y 2
"""

jvec = [0]

#f1 = 8.8
#f2 = 17.5
f1 = 8
f2 = 18

Freqs0 = Freqs[0]
Freqs1 = [f+f1*1e6 for f in Freqs[1]]
Freqs2 = [f+f2*1e6 for f in Freqs[2]]

plt.figure()

plt.errorbar([2*f*1e-6 for f in Freqs0], Counts[0], yerr=np.sqrt(Counts[0]), fmt='o', capsize=2, markersize=2)
plt.errorbar([2*f*1e-6 for f in Freqs1], Counts[1], yerr=np.sqrt(Counts[1]), fmt='o', capsize=2, markersize=2)
plt.errorbar([2*f*1e-6 for f in Freqs2], Counts[2], yerr=np.sqrt(Counts[2]), fmt='o', capsize=2, markersize=2)

plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()


Freqs_merged = list(Freqs0) + Freqs1[125:] + Freqs2[126:]
Counts_merged = list(Counts[0]) + list(Counts[1][125:]) + list(Counts[2][126:])

plt.figure()

plt.errorbar([2*f*1e-6 for f in Freqs_merged], Counts_merged, yerr=np.sqrt(np.array(Counts_merged)), fmt='o', capsize=2, markersize=2)



#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels_MM, GenerateNoisyCPT_MM_fit
from scipy.optimize import curve_fit

"""
Ajusto un cpt para obtener todos los parámetros relevantes primero.
I fit a cpt curve to retrieve all the relevant parameters first.
"""

phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0,  0
phiprobe = 0
titaprobe = 90

gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 
alpha = 0
noiseamplitude = 0

T = 0.6e-3

sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0


lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres


u = 33.5e6

beta = 0

drivefreq = 2*np.pi*22.135e6

correccion = 12

offsetxpi = 458+correccion
DetDoppler = -2.5   -correccion

FreqsDRpi = [2*f*1e-6-offsetxpi+14 for f in Freqs_merged]
CountsDRpi = Counts_merged

freqslongpi = np.arange(min(FreqsDRpi), max(FreqsDRpi)+FreqsDRpi[1]-FreqsDRpi[0], 0.1*(FreqsDRpi[1]-FreqsDRpi[0]))

#[1.71811842e+04 3.34325038e-17]

def FitEITpi(freqs, SG, SP, BETA, scale, offset):
    temp = 1e-3
    MeasuredFreq, MeasuredFluo = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA, drivefreq, min(freqs), max(freqs), freqs[1]-freqs[0])
    #MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_MM_fit(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA, drivefreq, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
    #scale = 0.3*2e+04
    #offset = 0.3*2e+03
    FinalFluo = [f*scale + offset for f in MeasuredFluo]
    return FinalFluo

popt_fullcpt, pcov_fullcpt = curve_fit(FitEITpi, FreqsDRpi[1:], CountsDRpi, p0=[0.5, 4.5, 1, 1e4, 1e3], bounds=((0, 0, 0, 1e1, 0), (2, 10, 1000, 1e5, 1e5)))

#print(f'Temperatura: ({round(1e3*popt_fullcpt[-1],2)} +- {round(1e3*np.sqrt(pcov_fullcpt[-1][-1]),2)}) mK')


print(popt_fullcpt)
#%%

FittedEITpi = FitEITpi(freqslongpi, popt_fullcpt[0], popt_fullcpt[1], 4, popt_fullcpt[3], popt_fullcpt[4])
#FittedEITpi = FitEITpi(freqslongpi, *popt_fullcpt)

"""
Ploteo la CPT de referencia junto al ajuste y a la resonancia oscura de interes
I plot the reference CPT along with the fit to the model and the dark resonance of interest
"""

DRs = [-26.5, -18, -11.5, -3]

plt.figure()
plt.errorbar(FreqsDRpi, Counts_merged, yerr=np.sqrt(np.array(Counts_merged)), fmt='o', capsize=2, markersize=2)
for dr in DRs:
    plt.axvline(dr, color='black', alpha=0.5)
    plt.axvline(dr-22.1, color='red', alpha=0.5)
    plt.axvline(dr+22.1, color='blue', alpha=0.2)

plt.plot(freqslongpi, FittedEITpi[1:])


#%%
#ignorar de aca para abajo por ahora

#%%
#i_DR = 955

DRs = [-31, -22, -16.5, -8]

plt.figure()
plt.errorbar(FreqsDRpi, CountsDRpi, yerr=2*np.sqrt(CountsDRpi), fmt='o', capsize=2, markersize=2)
plt.plot(freqslongpi[:-1], FittedEITpi)
for dr in DRs:
    dr = dr+4.7
    plt.axvline(dr, color='red',alpha=0.2)
    plt.axvline(dr+22.1, color='green',alpha=0.2)
    plt.axvline(dr-22.1, color='black',alpha=0.2)
#plt.axvline(DetDoppler-22.1)
#plt.axvline(DetDoppler+22.1)
#plt.plot(freqslongpi[i_DR], FittedEITpi[i_DR],'o', color='red', markersize=12)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')

#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')



#%%
"""
Simulo CPTs con todos esos parámetros para distintas temperaturas
I simulate CPT curves with all the previous parameters but with varying temperatures
"""
TempVecTeorico = list(np.arange(0.3,1,0.1))+list(np.arange(1, 31, 1))
CurvasTeoricas = []

for tempi in TempVecTeorico:
    CurvasTeoricas.append(FitEITpi(freqslongpi, *popt_fullcpt[:-1], tempi*1e-3))



#%%
"""
Acá agarro la primera y busco el valor i_DR que corresponde a la resonancia oscura de interés
With the first one, I look for the value i_DR which corresponds to the dark resonance of interest
"""
curva_ref = CurvasTeoricas[0]

i_DR = 955

plt.figure()

plt.plot(freqslongpi, curva_ref)
plt.plot(freqslongpi[i_DR], curva_ref[i_DR],'o')

#%%
"""
ploteo algunos CPTs teoricos para algunas temperaturas
Plotting some theory cpt curves for some temperatures
"""

plt.plot(freqslongpi, CurvasTeoricas[0])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[0][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[10])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[10][i_DR],'o',markersize=10)
plt.plot(freqslongpi, CurvasTeoricas[20])
plt.plot(freqslongpi[i_DR], CurvasTeoricas[20][i_DR],'o',markersize=10)
plt.xlabel('Detuning (MHz)')
plt.ylabel('Fluorescence')
plt.grid()



#%%
"""
Ahora interpolo los valores teóricos de las profundidades de esas resonancias
y aplico la interpolación a las mediciones para obtener temperaturas.
Luego, grafico las temperaturas en función de los tiempos de calentamiento.

Now I interpolate the theoretical values of the depths of those resonances
and apply the interpolation to the measurements to obtain temperatures.
After that, I plot the temperatures with respect to the heating times
"""
from scipy.interpolate import interp1d

FluosDRTeo = [CurvasTeoricas[k][i_DR] for k in range(len(CurvasTeoricas))]

interpolado = interp1d(FluosDRTeo, TempVecTeorico) #creo funcion que interpola


meas = 0
maxi = 9 #valor maximo, dsp el ion se calento
 
Heating_tim = Times[meas][:maxi]
Heating_tim_ms = [t*1e3 for t in Heating_tim]
Heating_med = [2*c for c in Counts_heating[meas][:maxi]]

ErrorHeating_med = [2*np.sqrt(c) for c in Counts_heating[meas][:maxi]]

Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med]
Error_Temperaturas_interpoladas = [float(interpolado(Heating_med[k]+0.5*ErrorHeating_med[k]))-Temperaturas_interpoladas[k] for k in range(len(Heating_med))]

plt.figure()
plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange')
plt.plot(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000), interpolado(np.linspace(FluosDRTeo[0],FluosDRTeo[-1],1000)))
plt.xlabel('Cuentas de DR teoricas')
plt.ylabel('Temperatura (mK)')

plt.figure()
#plt.plot(Heating_med, Heating_tim, 'o', color='blue')
plt.errorbar([t*1e3 for t in Heating_tim], Heating_med, yerr=ErrorHeating_med, fmt='o', capsize=2, markersize=5)

plt.ylabel('Cuentas de DR medidas')
plt.xlabel('Heating time (s)')

def lineal(x,a,b):
    return a*x+b

#p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas, sigma=Error_Temperaturas_interpoladas)
p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas)


#%%
"""
Grafico finalmente el plot del heating rate de la trampa
Finally I plot the heating rate of the trap
"""


plt.figure()
#plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o')
plt.errorbar(Heating_tim_ms,Temperaturas_interpoladas, yerr=np.array(Error_Temperaturas_interpoladas), fmt='o', capsize=2, markersize=7, color='black')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1), color='red')
plt.xlabel('Heating time (ms)', fontname='STIXGeneral', fontsize=15)
plt.ylabel('Temperature (mK)', fontname='STIXGeneral', fontsize=15)
plt.grid()
plt.xticks([0, 5, 10, 15, 20 ,25, 30, 35], fontname='STIXGeneral', fontsize=15)
plt.yticks([0, 5, 10, 15], fontname='STIXGeneral', fontsize=15)
plt.title(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms', fontname='STIXGeneral', fontsize=15)
plt.tight_layout()
plt.savefig('Fig_heatingrate.svg')
print(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')


#%%
"""
Ahora voy a ver CPT enteras con tiempos de calentamiento distintos.
Now I see whole CPT curves with different heating times
"""

jvec = [3, 4]

plt.figure()
i = 0
for j in jvec:
    if j==4:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==3:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='5 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()


jvec = [1, 2]

plt.figure()
i = 0
for j in jvec:
    if j==2:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==1:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='1 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,2900)
plt.grid()
plt.legend()

#%%

"""
La siguiente curva probablemente no este bien medida ya que inmediatamente
despues, los laseres se deslockearon. La dejo por las dudas.

This curve is probably not well measured...

"""

jvec = [5, 6]

plt.figure()
i = 0
for j in jvec:
    if j==6:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
    elif j==5:
        plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='10 ms heating')
    i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.ylim(1000,3900)
plt.grid()
plt.legend()
plt.title('Ojo: medicion condicionada por derivas')


#%%
"""
Ahora ploteo 6 curvas cpt para distintos valores de potencia del UV

This is a plot of 6 different cpt curves for 6 different UV powers. I should fit them
to obtain saturation parameters
"""


jvec = [7,8,9,10,11,12]

plt.figure()
for j in jvec:
    plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2, label='Without heating')
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
#plt.ylim(1000,2900)
plt.grid()
#plt.legend()