Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
artiq_experiments
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nicolas Nunez Barreto
artiq_experiments
Commits
19fbd62a
Commit
19fbd62a
authored
Sep 06, 2023
by
Nicolas Nunez Barreto
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
todo dd la compu
parent
03827e15
Changes
9
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
1341 additions
and
73 deletions
+1341
-73
CPT_plotter_20220520.py
...is/plots/20220526_CPTvariandoB_v2/CPT_plotter_20220520.py
+51
-16
Bvsk_Saturation_Measurements.py
...andoB_barriendopotenciaIR/Bvsk_Saturation_Measurements.py
+99
-38
CamposVector.txt
...0220527_CPTvariandoB_barriendopotenciaIR/CamposVector.txt
+290
-0
RabiVector.txt
.../20220527_CPTvariandoB_barriendopotenciaIR/RabiVector.txt
+290
-0
untitled0.py
...ts/20220527_CPTvariandoB_barriendopotenciaIR/untitled0.py
+11
-7
CPT_plotter_20220615.py
.../20220615_CPTvariandocompensacion/CPT_plotter_20220615.py
+17
-9
CamposVector.txt
...ts/20220615_CPTvariandocompensacion/Data/CamposVector.txt
+290
-0
MM_eightLevel_2repumps_python_scripts.py
...cion/Data/EITfit/MM_eightLevel_2repumps_python_scripts.py
+3
-3
RabiVector.txt
...lots/20220615_CPTvariandocompensacion/Data/RabiVector.txt
+290
-0
No files found.
analisis/plots/20220526_CPTvariandoB_v2/CPT_plotter_20220520.py
View file @
19fbd62a
...
...
@@ -469,6 +469,8 @@ ErrorDetuningfits = [np.sqrt(pcov_12)[3,3], np.sqrt(pcov_13)[3,3],np.sqrt(pcov_1
ErrorPotIRfits
=
[
np
.
sqrt
(
pcov_12
)[
2
,
2
],
np
.
sqrt
(
pcov_13
)[
2
,
2
],
np
.
sqrt
(
pcov_14
)[
2
,
2
],
np
.
sqrt
(
pcov_15
)[
2
,
2
]]
ErrorPotUVfits
=
[
np
.
sqrt
(
pcov_12
)[
1
,
1
],
np
.
sqrt
(
pcov_13
)[
1
,
1
],
np
.
sqrt
(
pcov_14
)[
1
,
1
],
np
.
sqrt
(
pcov_15
)[
1
,
1
]]
ErrorLarmorsvecs
=
[
np
.
sqrt
(
pcov_12
)[
0
,
0
],
np
.
sqrt
(
pcov_13
)[
0
,
0
],
np
.
sqrt
(
pcov_14
)[
0
,
0
],
np
.
sqrt
(
pcov_15
)[
0
,
0
]]
print
(
Detuningsfits
)
print
(
PotIRfits
)
print
(
PotUVfits
)
...
...
@@ -522,6 +524,17 @@ plt.plot(freqslongpi_15, FittedEITpi_15)
#%%
#filtro y mejoro el plot
"""
Figura 4 del paper (apendice)
"""
Ufields
=
[
popt_12
[
0
],
popt_13
[
0
],
popt_14
[
0
],
popt_15
[
0
]]
ErrorUfields
=
[
np
.
sqrt
(
pcov_12
)[
0
,
0
],
np
.
sqrt
(
pcov_13
)[
0
,
0
],
np
.
sqrt
(
pcov_14
)[
0
,
0
],
np
.
sqrt
(
pcov_15
)[
0
,
0
]]
Bfields
=
[
u
/
(
2
*
np
.
pi
)
/
1398190
for
u
in
Ufields
]
ErrorBfields
=
[
eu
/
(
2
*
np
.
pi
)
/
1398190
for
eu
in
ErrorUfields
]
from
scipy.signal
import
savgol_filter
as
sf
import
seaborn
as
sns
...
...
@@ -548,10 +561,9 @@ FiltCounts15 = np.array([(c-offs)*100/scal for c in sf(CountsDRpi_15, winl, po)]
ErrorCounts15
=
np
.
array
([
0.5
*
np
.
sqrt
(
c
/
scal
)
for
c
in
sf
(
CountsDRpi_15
,
winl
,
po
)])
#plot con escalas atomicas y lindo
colors
=
sns
.
color_palette
(
"
rocket
"
,
10
)
colors
=
sns
.
color_palette
(
"
mako
"
,
10
)
color1
=
colors
[
1
]
color2
=
colors
[
2
]
...
...
@@ -562,10 +574,10 @@ ms = 4
plt
.
figure
(
figsize
=
(
3.5
,
3
))
plt
.
plot
(
FreqsDRpi_12
,
FiltCounts12
,
'o'
,
markersize
=
ms
,
color
=
color1
,
label
=
r'$S_{rep}=6.31$
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_13
,
FiltCounts13
,
'o'
,
markersize
=
ms
,
color
=
color2
,
label
=
r'$S_{rep}=6.31$
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_14
,
FiltCounts14
,
'o'
,
markersize
=
ms
,
color
=
color3
,
label
=
r'$S_{rep}=6.31$
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_15
,
FiltCounts15
,
'o'
,
markersize
=
ms
,
color
=
color4
,
label
=
r'$S_{rep}=6.31$
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_12
,
FiltCounts12
,
'o'
,
markersize
=
ms
,
color
=
color1
,
label
=
fr
'$B=${round(1e3*Bfields[0])}({round(1e3*ErrorBfields[0])}) mG
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_13
,
FiltCounts13
,
'o'
,
markersize
=
ms
,
color
=
color2
,
label
=
fr
'$B=${round(1e3*Bfields[1])}({round(1e3*ErrorBfields[1])}) mG
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_14
,
FiltCounts14
,
'o'
,
markersize
=
ms
,
color
=
color3
,
label
=
fr
'$B=${round(1e3*Bfields[2])}({round(1e3*ErrorBfields[2])}) mG
'
,
alpha
=
0.3
)
plt
.
plot
(
FreqsDRpi_15
,
FiltCounts15
,
'o'
,
markersize
=
ms
,
color
=
color4
,
label
=
fr
'$B=${round(1e3*Bfields[3])}({round(1e3*ErrorBfields[3])}) mG
'
,
alpha
=
0.3
)
plt
.
plot
(
freqslongpi_12
,
[(
c
-
offs
)
*
100
/
scal
for
c
in
FittedEITpi_12
],
color
=
color1
,
linewidth
=
3
)
plt
.
plot
(
freqslongpi_13
,
[(
c
-
offs
)
*
100
/
scal
for
c
in
FittedEITpi_13
],
color
=
color2
,
linewidth
=
3
)
...
...
@@ -578,12 +590,22 @@ plt.fill_between(FreqsDRpi_14, FiltCounts14+ErrorCounts14, FiltCounts14-ErrorCou
plt
.
fill_between
(
FreqsDRpi_15
,
FiltCounts15
+
ErrorCounts15
,
FiltCounts15
-
ErrorCounts15
,
color
=
color4
,
alpha
=
0.2
)
plt
.
xlim
(
-
40
,
30
)
plt
.
xlabel
(
'Repump detuning (MHz)'
,
fontsize
=
11
)
plt
.
ylabel
(
'Normalized fluorescence'
,
fontsize
=
11
)
plt
.
ylim
(
-
0.1
,
1.4
)
plt
.
xlabel
(
'Repump detuning (MHz)'
,
fontsize
=
12
,
fontname
=
'STIXgeneral'
)
plt
.
ylabel
(
'Normalized fluorescence'
,
fontsize
=
12
,
fontname
=
'STIXgeneral'
)
plt
.
xticks
([
-
40
,
-
20
,
0
,
20
],
fontsize
=
12
,
fontname
=
'STIXgeneral'
)
plt
.
yticks
([
0
,
0.3
,
0.6
,
0.9
,
1.2
],
fontsize
=
12
,
fontname
=
'STIXgeneral'
)
visible_ticks
=
{
"top"
:
False
,
"right"
:
False
}
plt
.
tick_params
(
axis
=
"x"
,
which
=
"both"
,
**
visible_ticks
)
plt
.
tick_params
(
axis
=
"y"
,
which
=
"both"
,
**
visible_ticks
)
#plt.legend(loc='upper left', frameon=True, fontsize=7.6, handletextpad=0.1)
plt
.
grid
()
plt
.
tight_layout
()
#plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Work/2022 B vs k race/Figuras/Figuras jpg trabajadas/CPT_exp.png',dpi=500)
#plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Papers/2022 B vs K eigenbasis/Figuras_finales/Finalesfinales/Fig3_final.pdf')
#%%
from
scipy.optimize
import
curve_fit
...
...
@@ -611,8 +633,8 @@ IFit = [-1.2, -1.5, -1.75, -2]
LarmorFit
=
[
popt_12
[
0
],
popt_13
[
0
],
popt_14
[
0
],
popt_15
[
0
]]
#LarmorFit = [287282.374931893, 203998.09641511342, 158507.0255951109] por si fallan los ajustes
MeanError
=
np
.
mean
([
np
.
sqrt
(
pcov_12
[
0
,
0
]),
np
.
sqrt
(
pcov_13
[
0
,
0
]),
np
.
sqrt
(
pcov_14
[
0
,
0
]),
np
.
sqrt
(
pcov_15
[
0
,
0
])])
#MeanError = 11139.353180216529
por si fallan los ajustes
ErrorLarmorFit
=
[
np
.
sqrt
(
pcov_12
[
0
,
0
]),
np
.
sqrt
(
pcov_13
[
0
,
0
]),
np
.
sqrt
(
pcov_14
[
0
,
0
]),
np
.
sqrt
(
pcov_15
[
0
,
0
])]
MeanError
=
11139.353180216529
#
por si fallan los ajustes
Ilong
=
np
.
arange
(
2
,
-
3
,
-
0.01
)
popt_larmor
,
pcov_larmor
=
curve_fit
(
LinearLarmortoCurrent
,
IFit
,
LarmorFit
)
...
...
@@ -625,14 +647,27 @@ plt.plot(IFit, LarmorFit, 'o', markersize=5)
plt
.
plot
(
Ilong
,
LarmorLong
)
Bfitted
=
[
ConvertLarmortoBfield
(
u
)
for
u
in
LarmorFit
]
ErrorBfitted
=
[
ConvertLarmortoBfield
(
u
)
for
u
in
ErrorLarmorFit
]
BLong
=
[
ConvertLarmortoBfield
(
u
)
for
u
in
LarmorLong
]
#ESTE GRAFICO TIENE QUE IR EN LA TESIS CUANDO PONGA
#COMO CALIBRE EL CAMPO MAGNETICO CON LA CORRIENTE
plt
.
figure
()
plt
.
plot
(
Ilong
,
BLong
)
plt
.
plot
(
IFit
,
Bfitted
,
'o'
,
markersize
=
8
)
plt
.
plot
(
Ilong
,
[
b
*
1e3
for
b
in
BLong
])
plt
.
plot
(
IFit
,
[
b
*
1e3
for
b
in
Bfitted
],
'o'
,
markersize
=
8
)
plt
.
xlim
(
-
2.2
,
-
1
)
plt
.
ylim
(
0.012
*
1e3
,
0.045
*
1e3
)
plt
.
xlabel
(
'Corriente (A)'
)
plt
.
ylabel
(
'Campo magnetico (G)'
)
plt
.
ylabel
(
'Campo magnetico (
m
G)'
)
plt
.
grid
()
#%%
plt
.
figure
()
plt
.
plot
(
Ilong
,
[
b
*
1e-6
for
b
in
LarmorLong
])
plt
.
errorbar
(
IFit
,
[
b
*
1e-6
for
b
in
LarmorFit
],
yerr
=
1e-6
*
MeanError
,
fmt
=
'o'
,
capsize
=
4
,
markersize
=
4
)
plt
.
xlim
(
-
2.2
,
-
1
)
plt
.
ylim
(
0.1
,
0.43
)
plt
.
xlabel
(
'Coil current (A)'
)
plt
.
ylabel
(
'Larmor frequency (MHz)'
)
plt
.
grid
()
analisis/plots/20220527_CPTvariandoB_barriendopotenciaIR/Bvsk_Saturation_Measurements.py
View file @
19fbd62a
This diff is collapsed.
Click to expand it.
analisis/plots/20220527_CPTvariandoB_barriendopotenciaIR/CamposVector.txt
0 → 100644
View file @
19fbd62a
0.000000000000000000e+00
1.138292635058539559e-01
2.276585270117079118e-01
3.414877905175618955e-01
4.553170540234158237e-01
5.691463175292698073e-01
6.829755810351237910e-01
7.968048445409777747e-01
9.106341080468316473e-01
1.024463371552685631e+00
1.138292635058539615e+00
1.252121898564393598e+00
1.365951162070247582e+00
1.479780425576101566e+00
1.593609689081955549e+00
1.707438952587809311e+00
1.821268216093663295e+00
1.935097479599517500e+00
2.048926743105371262e+00
2.162756006611225246e+00
2.276585270117079229e+00
2.390414533622933213e+00
2.504243797128787197e+00
2.618073060634641180e+00
2.731902324140495164e+00
2.845731587646348704e+00
2.959560851152203131e+00
3.073390114658057115e+00
3.187219378163911099e+00
3.301048641669765082e+00
3.414877905175618622e+00
3.528707168681472606e+00
3.642536432187326589e+00
3.756365695693181017e+00
3.870194959199035001e+00
3.984024222704888540e+00
4.097853486210742524e+00
4.211682749716596952e+00
4.325512013222450491e+00
4.439341276728304919e+00
4.553170540234158459e+00
4.666999803740012887e+00
4.780829067245866426e+00
4.894658330751719966e+00
5.008487594257574393e+00
5.122316857763427933e+00
5.236146121269282361e+00
5.349975384775135900e+00
5.463804648280990328e+00
5.577633911786843868e+00
5.691463175292697407e+00
5.805292438798551835e+00
5.919121702304406263e+00
6.032950965810260691e+00
6.146780229316114230e+00
6.260609492821967770e+00
6.374438756327822198e+00
6.488268019833675737e+00
6.602097283339530165e+00
6.715926546845383704e+00
6.829755810351237244e+00
6.943585073857091672e+00
7.057414337362945211e+00
7.171243600868799639e+00
7.285072864374653179e+00
7.398902127880506718e+00
7.512731391386362034e+00
7.626560654892215574e+00
7.740389918398070002e+00
7.854219181903923541e+00
7.968048445409777081e+00
8.081877708915630620e+00
8.195706972421485048e+00
8.309536235927339476e+00
8.423365499433193904e+00
8.537194762939046555e+00
8.651024026444900983e+00
8.764853289950755411e+00
8.878682553456609838e+00
8.992511816962462490e+00
9.106341080468316918e+00
9.220170343974169569e+00
9.333999607480025773e+00
9.447828870985878424e+00
9.561658134491732852e+00
9.675487397997585504e+00
9.789316661503439931e+00
9.903145925009294359e+00
1.001697518851514879e+01
1.013080445202100321e+01
1.024463371552685587e+01
1.035846297903271029e+01
1.047229224253856472e+01
1.058612150604441915e+01
1.069995076955027180e+01
1.081378003305612623e+01
1.092760929656198066e+01
1.104143856006783508e+01
1.115526782357368774e+01
1.126909708707954216e+01
1.138292635058539481e+01
1.149675561409125102e+01
1.161058487759710367e+01
1.172441414110295810e+01
1.183824340460881253e+01
1.195207266811466518e+01
1.206590193162052138e+01
1.217973119512637403e+01
1.229356045863222846e+01
1.240738972213808111e+01
1.252121898564393554e+01
1.263504824914978997e+01
1.274887751265564440e+01
1.286270677616149705e+01
1.297653603966735147e+01
1.309036530317320413e+01
1.320419456667906033e+01
1.331802383018491476e+01
1.343185309369076741e+01
1.354568235719662184e+01
1.365951162070247449e+01
1.377334088420833069e+01
1.388717014771418334e+01
1.400099941122003777e+01
1.411482867472589042e+01
1.422865793823174485e+01
1.434248720173759928e+01
1.445631646524345371e+01
1.457014572874930636e+01
1.468397499225516079e+01
1.479780425576101344e+01
1.491163351926686964e+01
1.502546278277272407e+01
1.513929204627857672e+01
1.525312130978443115e+01
1.536695057329028380e+01
1.548077983679614000e+01
1.559460910030199265e+01
1.570843836380784708e+01
1.582226762731370151e+01
1.593609689081955416e+01
1.604992615432540859e+01
1.616375541783126124e+01
1.627758468133711744e+01
1.639141394484297010e+01
1.650524320834882275e+01
1.661907247185467895e+01
1.673290173536053160e+01
1.684673099886638781e+01
1.696056026237224046e+01
1.707438952587809311e+01
1.718821878938394931e+01
1.730204805288980197e+01
1.741587731639565462e+01
1.752970657990151082e+01
1.764353584340736347e+01
1.775736510691321968e+01
1.787119437041906878e+01
1.798502363392492498e+01
1.809885289743078118e+01
1.821268216093663384e+01
1.832651142444249004e+01
1.844034068794833914e+01
1.855416995145419534e+01
1.866799921496005155e+01
1.878182847846590420e+01
1.889565774197175685e+01
1.900948700547760950e+01
1.912331626898346570e+01
1.923714553248932191e+01
1.935097479599517101e+01
1.946480405950102721e+01
1.957863332300687986e+01
1.969246258651273607e+01
1.980629185001858872e+01
1.992012111352444137e+01
2.003395037703029757e+01
2.014777964053615023e+01
2.026160890404200643e+01
2.037543816754785908e+01
2.048926743105371173e+01
2.060309669455956794e+01
2.071692595806542059e+01
2.083075522157127324e+01
2.094458448507712944e+01
2.105841374858298209e+01
2.117224301208883830e+01
2.128607227559468740e+01
2.139990153910054360e+01
2.151373080260639981e+01
2.162756006611225246e+01
2.174138932961810866e+01
2.185521859312396131e+01
2.196904785662981396e+01
2.208287712013567017e+01
2.219670638364152282e+01
2.231053564714737547e+01
2.242436491065323168e+01
2.253819417415908433e+01
2.265202343766494053e+01
2.276585270117078963e+01
2.287968196467664583e+01
2.299351122818250204e+01
2.310734049168835469e+01
2.322116975519420734e+01
2.333499901870005999e+01
2.344882828220591620e+01
2.356265754571177240e+01
2.367648680921762505e+01
2.379031607272347770e+01
2.390414533622933035e+01
2.401797459973518656e+01
2.413180386324104276e+01
2.424563312674689186e+01
2.435946239025274807e+01
2.447329165375860072e+01
2.458712091726445692e+01
2.470095018077030957e+01
2.481477944427616222e+01
2.492860870778201843e+01
2.504243797128787108e+01
2.515626723479372728e+01
2.527009649829957993e+01
2.538392576180543259e+01
2.549775502531128879e+01
2.561158428881714144e+01
2.572541355232299409e+01
2.583924281582885030e+01
2.595307207933470295e+01
2.606690134284055915e+01
2.618073060634640825e+01
2.629455986985226446e+01
2.640838913335812066e+01
2.652221839686397331e+01
2.663604766036982952e+01
2.674987692387567861e+01
2.686370618738153482e+01
2.697753545088739102e+01
2.709136471439324367e+01
2.720519397789909632e+01
2.731902324140494898e+01
2.743285250491080518e+01
2.754668176841666138e+01
2.766051103192251048e+01
2.777434029542836669e+01
2.788816955893421934e+01
2.800199882244007554e+01
2.811582808594592819e+01
2.822965734945178085e+01
2.834348661295763705e+01
2.845731587646348970e+01
2.857114513996934591e+01
2.868497440347519856e+01
2.879880366698105121e+01
2.891263293048690741e+01
2.902646219399276006e+01
2.914029145749861271e+01
2.925412072100446892e+01
2.936794998451032157e+01
2.948177924801617777e+01
2.959560851152202687e+01
2.970943777502788308e+01
2.982326703853373928e+01
2.993709630203959193e+01
3.005092556554544814e+01
3.016475482905129724e+01
3.027858409255715344e+01
3.039241335606300964e+01
3.050624261956886230e+01
3.062007188307471495e+01
3.073390114658056760e+01
3.084773041008642380e+01
3.096155967359228001e+01
3.107538893709812911e+01
3.118921820060398531e+01
3.130304746410984151e+01
3.141687672761569416e+01
3.153070599112154682e+01
3.164453525462740302e+01
3.175836451813325567e+01
3.187219378163910832e+01
3.198602304514496808e+01
3.209985230865081718e+01
3.221368157215667338e+01
3.232751083566252248e+01
3.244134009916837869e+01
3.255516936267423489e+01
3.266899862618008399e+01
3.278282788968594019e+01
3.289665715319179640e+01
analisis/plots/20220527_CPTvariandoB_barriendopotenciaIR/RabiVector.txt
0 → 100644
View file @
19fbd62a
-9.606361638711223561e-04
6.949744969572168099e-03
1.486012610301545855e-02
2.277050723645875421e-02
3.068088836990203946e-02
3.859126950334533512e-02
4.650165063678862731e-02
5.441203177023191950e-02
6.232241290367519782e-02
7.023279403711850388e-02
7.814317517056178219e-02
8.605355630400507438e-02
9.396393743744838045e-02
1.018743185708916588e-01
1.097846997043349510e-01
1.176950808377782431e-01
1.256054619712215215e-01
1.335158431046648275e-01
1.414262242381081336e-01
1.493366053715513841e-01
1.572469865049946902e-01
1.651573676384379963e-01
1.730677487718812746e-01
1.809781299053245807e-01
1.888885110387678867e-01
1.967988921722111373e-01
2.047092733056544434e-01
2.126196544390977494e-01
2.205300355725410277e-01
2.284404167059843338e-01
2.363507978394276121e-01
2.442611789728708904e-01
2.521715601063141965e-01
2.600819412397575303e-01
2.679923223732008086e-01
2.759027035066440869e-01
2.838130846400874208e-01
2.917234657735306991e-01
2.996338469069739219e-01
3.075442280404172557e-01
3.154546091738605340e-01
3.233649903073038678e-01
3.312753714407471461e-01
3.391857525741904245e-01
3.470961337076337028e-01
3.550065148410769811e-01
3.629168959745203149e-01
3.708272771079635932e-01
3.787376582414069270e-01
3.866480393748502054e-01
3.945584205082934282e-01
4.024688016417367620e-01
4.103791827751800403e-01
4.182895639086233741e-01
4.261999450420666524e-01
4.341103261755099307e-01
4.420207073089532090e-01
4.499310884423964874e-01
4.578414695758398212e-01
4.657518507092830995e-01
4.736622318427263778e-01
4.815726129761697116e-01
4.894829941096129344e-01
4.973933752430562683e-01
5.053037563764994911e-01
5.132141375099428249e-01
5.211245186433861587e-01
5.290348997768293815e-01
5.369452809102727153e-01
5.448556620437160491e-01
5.527660431771592719e-01
5.606764243106024947e-01
5.685868054440459396e-01
5.764971865774891624e-01
5.844075677109324962e-01
5.923179488443757190e-01
6.002283299778189418e-01
6.081387111112623867e-01
6.160490922447056095e-01
6.239594733781489433e-01
6.318698545115921661e-01
6.397802356450353889e-01
6.476906167784788337e-01
6.556009979119220565e-01
6.635113790453653904e-01
6.714217601788086132e-01
6.793321413122519470e-01
6.872425224456952808e-01
6.951529035791385036e-01
7.030632847125818374e-01
7.109736658460250602e-01
7.188840469794683941e-01
7.267944281129117279e-01
7.347048092463550617e-01
7.426151903797982845e-01
7.505255715132415073e-01
7.584359526466849521e-01
7.663463337801281750e-01
7.742567149135715088e-01
7.821670960470147316e-01
7.900774771804579544e-01
7.979878583139013992e-01
8.058982394473446220e-01
8.138086205807879558e-01
8.217190017142311786e-01
8.296293828476744014e-01
8.375397639811178463e-01
8.454501451145610691e-01
8.533605262480044029e-01
8.612709073814476257e-01
8.691812885148909595e-01
8.770916696483342934e-01
8.850020507817775162e-01
8.929124319152208500e-01
9.008228130486640728e-01
9.087331941821074066e-01
9.166435753155507404e-01
9.245539564489939632e-01
9.324643375824372971e-01
9.403747187158805199e-01
9.482850998493238537e-01
9.561954809827671875e-01
9.641058621162105213e-01
9.720162432496537441e-01
9.799266243830969669e-01
9.878370055165403008e-01
9.957473866499836346e-01
1.003657767783426857e+00
1.011568148916869969e+00
1.019478530050313303e+00
1.027388911183756637e+00
1.035299292317199971e+00
1.043209673450643304e+00
1.051120054584086638e+00
1.059030435717529750e+00
1.066940816850973084e+00
1.074851197984416418e+00
1.082761579117859752e+00
1.090671960251303085e+00
1.098582341384746419e+00
1.106492722518189531e+00
1.114403103651632865e+00
1.122313484785075977e+00
1.130223865918519532e+00
1.138134247051962866e+00
1.146044628185405978e+00
1.153955009318849312e+00
1.161865390452292424e+00
1.169775771585735979e+00
1.177686152719179313e+00
1.185596533852622425e+00
1.193506914986065759e+00
1.201417296119508871e+00
1.209327677252952427e+00
1.217238058386395760e+00
1.225148439519838872e+00
1.233058820653282206e+00
1.240969201786725318e+00
1.248879582920168874e+00
1.256789964053612207e+00
1.264700345187055319e+00
1.272610726320498653e+00
1.280521107453941765e+00
1.288431488587385321e+00
1.296341869720828655e+00
1.304252250854271766e+00
1.312162631987715100e+00
1.320073013121158434e+00
1.327983394254601768e+00
1.335893775388045102e+00
1.343804156521488213e+00
1.351714537654931547e+00
1.359624918788374881e+00
1.367535299921818215e+00
1.375445681055261549e+00
1.383356062188704660e+00
1.391266443322147994e+00
1.399176824455591328e+00
1.407087205589034662e+00
1.414997586722477996e+00
1.422907967855921108e+00
1.430818348989364441e+00
1.438728730122807775e+00
1.446639111256251109e+00
1.454549492389694443e+00
1.462459873523137555e+00
1.470370254656581110e+00
1.478280635790024222e+00
1.486191016923467556e+00
1.494101398056910890e+00
1.502011779190354002e+00
1.509922160323797558e+00
1.517832541457240891e+00
1.525742922590684003e+00
1.533653303724127337e+00
1.541563684857570449e+00
1.549474065991014005e+00
1.557384447124457338e+00
1.565294828257900450e+00
1.573205209391343784e+00
1.581115590524786896e+00
1.589025971658230452e+00
1.596936352791673785e+00
1.604846733925116897e+00
1.612757115058560231e+00
1.620667496192003343e+00
1.628577877325446899e+00
1.636488258458890233e+00
1.644398639592333344e+00
1.652309020725776678e+00
1.660219401859219790e+00
1.668129782992663346e+00
1.676040164126106680e+00
1.683950545259549791e+00
1.691860926392993125e+00
1.699771307526436237e+00
1.707681688659879793e+00
1.715592069793323127e+00
1.723502450926766238e+00
1.731412832060209572e+00
1.739323213193652906e+00
1.747233594327096240e+00
1.755143975460539574e+00
1.763054356593982686e+00
1.770964737727426019e+00
1.778875118860869353e+00
1.786785499994312687e+00
1.794695881127756021e+00
1.802606262261199133e+00
1.810516643394642466e+00
1.818427024528085800e+00
1.826337405661529134e+00
1.834247786794972468e+00
1.842158167928415580e+00
1.850068549061858914e+00
1.857978930195302247e+00
1.865889311328745581e+00
1.873799692462188915e+00
1.881710073595632027e+00
1.889620454729075361e+00
1.897530835862518694e+00
1.905441216995962028e+00
1.913351598129405362e+00
1.921261979262848474e+00
1.929172360396292030e+00
1.937082741529735141e+00
1.944993122663178475e+00
1.952903503796621809e+00
1.960813884930064921e+00
1.968724266063508477e+00
1.976634647196951589e+00
1.984545028330394922e+00
1.992455409463838256e+00
2.000365790597281812e+00
2.008276171730725146e+00
2.016186552864168036e+00
2.024096933997611369e+00
2.032007315131055147e+00
2.039917696264498037e+00
2.047828077397941371e+00
2.055738458531384705e+00
2.063648839664828039e+00
2.071559220798271372e+00
2.079469601931714706e+00
2.087379983065158040e+00
2.095290364198600930e+00
2.103200745332044708e+00
2.111111126465488042e+00
2.119021507598930931e+00
2.126931888732374265e+00
2.134842269865817599e+00
2.142752650999260933e+00
2.150663032132704267e+00
2.158573413266147600e+00
2.166483794399590934e+00
2.174394175533034268e+00
2.182304556666477602e+00
2.190214937799920492e+00
2.198125318933364269e+00
2.206035700066807159e+00
2.213946081200250493e+00
2.221856462333694271e+00
2.229766843467137161e+00
2.237677224600580494e+00
2.245587605734023384e+00
2.253497986867467162e+00
2.261408368000910496e+00
2.269318749134353386e+00
2.277229130267797164e+00
2.285139511401240053e+00
analisis/plots/20220527_CPTvariandoB_barriendopotenciaIR/untitled0.py
View file @
19fbd62a
...
...
@@ -8,11 +8,12 @@ Created on Thu Aug 31 16:18:18 2023
from
scipy.special
import
jv
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
seaborn
as
sns
def
CPTMicromotionSpectra
(
det
,
A
,
beta
,
x0
,
x1
):
ftrap
=
22.1
gamma
=
2
P
=
-
A
*
(
jv
(
0
,
beta
)
**
2
)
/
(((
det
-
x0
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
10
-
A
*
(
jv
(
0
,
beta
)
**
2
)
/
(((
det
-
x1
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
10
-
0.
5
*
det
gamma
=
3
P
=
-
A
*
(
jv
(
0
,
beta
)
**
2
)
/
(((
det
-
x0
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
10
-
A
*
(
jv
(
0
,
beta
)
**
2
)
/
(((
det
-
x1
)
**
2
)
+
(
0.5
*
gamma
)
**
2
)
+
10
-
0.
007
*
det
i
=
1
#print(P)
while
i
<=
10
:
...
...
@@ -25,12 +26,15 @@ def CPTMicromotionSpectra(det, A, beta, x0, x1):
detvec
=
np
.
arange
(
-
50
,
50
,
0.1
)
A
=
1
betavec
=
[
0
,
0.5
,
1
,
1.5
]
x0
=
0
x1
=
10
betavec
=
[
0
,
1.2
]
x0
=
-
5
x1
=
5
ii
=
0
plt
.
figure
()
for
beta
in
betavec
:
plt
.
plot
(
detvec
,
CPTMicromotionSpectra
(
detvec
,
A
,
beta
,
x0
,
x1
))
plt
.
plot
(
detvec
,
CPTMicromotionSpectra
(
detvec
,
A
,
beta
,
x0
,
x1
),
label
=
f
'beta: {beta}'
)
ii
=
ii
+
1
plt
.
xlim
(
-
50
,
50
)
plt
.
ylim
(
18.5
,
20.5
)
plt
.
ylim
(
19.25
,
20.5
)
plt
.
legend
()
analisis/plots/20220615_CPTvariandocompensacion/CPT_plotter_20220615.py
View file @
19fbd62a
...
...
@@ -8,7 +8,6 @@ from scipy.optimize import curve_fit
import
os
from
scipy
import
interpolate
#Mediciones de CPT para campo magnetico bajo y terrestre
#/home/nico/Documents/artiq_experiments/analisis/plots/20220615_CPTvariandocompensacion/Data
...
...
@@ -144,9 +143,9 @@ DR = [403.5,412.5,418,426.5]
for
dr
in
DR
:
plt
.
axvline
(
dr
,
color
=
'blue'
,
linestyle
=
'--'
,
alpha
=
0.3
)
#
plt.axvline(dr+22,color='crimson',linestyle='--',alpha=0.3)
plt
.
axvline
(
dr
+
22
,
color
=
'crimson'
,
linestyle
=
'--'
,
alpha
=
0.3
)
plt
.
axvline
(
dr
-
22
,
color
=
'red'
,
linestyle
=
'--'
)
#
plt.axvline(dr+44,color='red',linestyle='--')
plt
.
axvline
(
dr
+
44
,
color
=
'red'
,
linestyle
=
'--'
)
#plt.legend()
...
...
@@ -188,15 +187,24 @@ CountsDR = Counts[10]
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
def
FitEIT_MM
(
freqs
,
SCALE
,
OFFSET
,
SG
,
SP
,
BETA
,
TEMP
):
BETA
=
1.8
Detunings
,
Fluorescence
=
PerformExperiment_8levels
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
ScaledFluo
=
[
f
*
SCALE
+
OFFSET
for
f
in
Fluorescence
]
return
ScaledFluo
def
FitEIT_MM
(
freqs
,
SG
,
SP
,
SCALE1
,
SCALE2
,
OFFSET
,
BETA1
,
BETA2
):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP
=
1e-3
Detunings
,
Fluorescence1
=
PerformExperiment_8levels
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA1
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
Detunings
,
Fluorescence2
=
PerformExperiment_8levels
(
SG
,
SP
,
gPS
,
gPD
,
DetDoppler
,
u
,
DopplerLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
titaprobe
,
BETA2
,
drivefreq
,
min
(
freqs
),
max
(
freqs
)
+
(
freqs
[
1
]
-
freqs
[
0
]),
freqs
[
1
]
-
freqs
[
0
],
circularityprobe
=
CircPr
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
)
popt
,
pcov
=
curve_fit
(
FitEIT_MM
,
FreqsDR
,
CountsDR
,
p0
=
[
1e3
,
1e4
,
0.7
,
5
,
2
,
5e-3
],
bounds
=
((
0
,
0
,
0
,
0
,
0
,
0
),
(
1e5
,
1e5
,
1.5
,
10
,
3
,
15e-3
)))
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
ScaledFluo2
=
np
.
array
([
f
*
SCALE2
+
OFFSET
for
f
in
Fluorescence2
])
return
ScaledFluo1
+
ScaledFluo2
popt
,
pcov
=
curve_fit
(
FitEIT_MM
,
FreqsDR
,
CountsDR
,
p0
=
[
0.8
,
8
,
1e3
,
1e3
,
1e4
,
1
,
1
],
bounds
=
((
0
,
0
,
0
,
0
,
0
,
0
,
0
),
(
2
,
15
,
1e5
,
1e5
,
1e5
,
10
,
10
)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi
=
FitEIT_MM
(
freqslong
,
*
popt
)
plt
.
figure
()
...
...
analisis/plots/20220615_CPTvariandocompensacion/Data/CamposVector.txt
0 → 100644
View file @
19fbd62a
0.000000000000000000e+00
1.138292635058539559e-01
2.276585270117079118e-01
3.414877905175618955e-01
4.553170540234158237e-01
5.691463175292698073e-01
6.829755810351237910e-01
7.968048445409777747e-01
9.106341080468316473e-01
1.024463371552685631e+00
1.138292635058539615e+00
1.252121898564393598e+00
1.365951162070247582e+00
1.479780425576101566e+00
1.593609689081955549e+00
1.707438952587809311e+00
1.821268216093663295e+00
1.935097479599517500e+00
2.048926743105371262e+00
2.162756006611225246e+00
2.276585270117079229e+00
2.390414533622933213e+00
2.504243797128787197e+00
2.618073060634641180e+00
2.731902324140495164e+00
2.845731587646348704e+00
2.959560851152203131e+00
3.073390114658057115e+00
3.187219378163911099e+00
3.301048641669765082e+00
3.414877905175618622e+00
3.528707168681472606e+00
3.642536432187326589e+00
3.756365695693181017e+00
3.870194959199035001e+00
3.984024222704888540e+00
4.097853486210742524e+00
4.211682749716596952e+00
4.325512013222450491e+00
4.439341276728304919e+00
4.553170540234158459e+00
4.666999803740012887e+00
4.780829067245866426e+00
4.894658330751719966e+00
5.008487594257574393e+00
5.122316857763427933e+00
5.236146121269282361e+00
5.349975384775135900e+00
5.463804648280990328e+00
5.577633911786843868e+00
5.691463175292697407e+00
5.805292438798551835e+00
5.919121702304406263e+00
6.032950965810260691e+00
6.146780229316114230e+00
6.260609492821967770e+00
6.374438756327822198e+00
6.488268019833675737e+00
6.602097283339530165e+00
6.715926546845383704e+00
6.829755810351237244e+00
6.943585073857091672e+00
7.057414337362945211e+00
7.171243600868799639e+00
7.285072864374653179e+00
7.398902127880506718e+00
7.512731391386362034e+00
7.626560654892215574e+00
7.740389918398070002e+00
7.854219181903923541e+00
7.968048445409777081e+00
8.081877708915630620e+00
8.195706972421485048e+00
8.309536235927339476e+00
8.423365499433193904e+00
8.537194762939046555e+00
8.651024026444900983e+00
8.764853289950755411e+00
8.878682553456609838e+00
8.992511816962462490e+00
9.106341080468316918e+00
9.220170343974169569e+00
9.333999607480025773e+00
9.447828870985878424e+00
9.561658134491732852e+00
9.675487397997585504e+00
9.789316661503439931e+00
9.903145925009294359e+00
1.001697518851514879e+01
1.013080445202100321e+01
1.024463371552685587e+01
1.035846297903271029e+01
1.047229224253856472e+01
1.058612150604441915e+01
1.069995076955027180e+01
1.081378003305612623e+01
1.092760929656198066e+01
1.104143856006783508e+01
1.115526782357368774e+01
1.126909708707954216e+01
1.138292635058539481e+01
1.149675561409125102e+01
1.161058487759710367e+01
1.172441414110295810e+01
1.183824340460881253e+01
1.195207266811466518e+01
1.206590193162052138e+01
1.217973119512637403e+01
1.229356045863222846e+01
1.240738972213808111e+01
1.252121898564393554e+01
1.263504824914978997e+01
1.274887751265564440e+01
1.286270677616149705e+01
1.297653603966735147e+01
1.309036530317320413e+01
1.320419456667906033e+01
1.331802383018491476e+01
1.343185309369076741e+01
1.354568235719662184e+01
1.365951162070247449e+01
1.377334088420833069e+01
1.388717014771418334e+01
1.400099941122003777e+01
1.411482867472589042e+01
1.422865793823174485e+01
1.434248720173759928e+01
1.445631646524345371e+01
1.457014572874930636e+01
1.468397499225516079e+01
1.479780425576101344e+01
1.491163351926686964e+01
1.502546278277272407e+01
1.513929204627857672e+01
1.525312130978443115e+01
1.536695057329028380e+01
1.548077983679614000e+01
1.559460910030199265e+01
1.570843836380784708e+01
1.582226762731370151e+01
1.593609689081955416e+01
1.604992615432540859e+01
1.616375541783126124e+01
1.627758468133711744e+01
1.639141394484297010e+01
1.650524320834882275e+01
1.661907247185467895e+01
1.673290173536053160e+01
1.684673099886638781e+01
1.696056026237224046e+01
1.707438952587809311e+01
1.718821878938394931e+01
1.730204805288980197e+01
1.741587731639565462e+01
1.752970657990151082e+01
1.764353584340736347e+01
1.775736510691321968e+01
1.787119437041906878e+01
1.798502363392492498e+01
1.809885289743078118e+01
1.821268216093663384e+01
1.832651142444249004e+01
1.844034068794833914e+01
1.855416995145419534e+01
1.866799921496005155e+01
1.878182847846590420e+01
1.889565774197175685e+01
1.900948700547760950e+01
1.912331626898346570e+01
1.923714553248932191e+01
1.935097479599517101e+01
1.946480405950102721e+01
1.957863332300687986e+01
1.969246258651273607e+01
1.980629185001858872e+01
1.992012111352444137e+01
2.003395037703029757e+01
2.014777964053615023e+01
2.026160890404200643e+01
2.037543816754785908e+01
2.048926743105371173e+01
2.060309669455956794e+01
2.071692595806542059e+01
2.083075522157127324e+01
2.094458448507712944e+01
2.105841374858298209e+01
2.117224301208883830e+01
2.128607227559468740e+01
2.139990153910054360e+01
2.151373080260639981e+01
2.162756006611225246e+01
2.174138932961810866e+01
2.185521859312396131e+01
2.196904785662981396e+01
2.208287712013567017e+01
2.219670638364152282e+01
2.231053564714737547e+01
2.242436491065323168e+01
2.253819417415908433e+01
2.265202343766494053e+01
2.276585270117078963e+01
2.287968196467664583e+01
2.299351122818250204e+01
2.310734049168835469e+01
2.322116975519420734e+01
2.333499901870005999e+01
2.344882828220591620e+01
2.356265754571177240e+01
2.367648680921762505e+01
2.379031607272347770e+01
2.390414533622933035e+01
2.401797459973518656e+01
2.413180386324104276e+01
2.424563312674689186e+01
2.435946239025274807e+01
2.447329165375860072e+01
2.458712091726445692e+01
2.470095018077030957e+01
2.481477944427616222e+01
2.492860870778201843e+01
2.504243797128787108e+01
2.515626723479372728e+01
2.527009649829957993e+01
2.538392576180543259e+01
2.549775502531128879e+01
2.561158428881714144e+01
2.572541355232299409e+01
2.583924281582885030e+01
2.595307207933470295e+01
2.606690134284055915e+01
2.618073060634640825e+01
2.629455986985226446e+01
2.640838913335812066e+01
2.652221839686397331e+01
2.663604766036982952e+01
2.674987692387567861e+01
2.686370618738153482e+01
2.697753545088739102e+01
2.709136471439324367e+01
2.720519397789909632e+01
2.731902324140494898e+01
2.743285250491080518e+01
2.754668176841666138e+01
2.766051103192251048e+01
2.777434029542836669e+01
2.788816955893421934e+01
2.800199882244007554e+01
2.811582808594592819e+01
2.822965734945178085e+01
2.834348661295763705e+01
2.845731587646348970e+01
2.857114513996934591e+01
2.868497440347519856e+01
2.879880366698105121e+01
2.891263293048690741e+01
2.902646219399276006e+01
2.914029145749861271e+01
2.925412072100446892e+01
2.936794998451032157e+01
2.948177924801617777e+01
2.959560851152202687e+01
2.970943777502788308e+01
2.982326703853373928e+01
2.993709630203959193e+01
3.005092556554544814e+01
3.016475482905129724e+01
3.027858409255715344e+01
3.039241335606300964e+01
3.050624261956886230e+01
3.062007188307471495e+01
3.073390114658056760e+01
3.084773041008642380e+01
3.096155967359228001e+01
3.107538893709812911e+01
3.118921820060398531e+01
3.130304746410984151e+01
3.141687672761569416e+01
3.153070599112154682e+01
3.164453525462740302e+01
3.175836451813325567e+01
3.187219378163910832e+01
3.198602304514496808e+01
3.209985230865081718e+01
3.221368157215667338e+01
3.232751083566252248e+01
3.244134009916837869e+01
3.255516936267423489e+01
3.266899862618008399e+01
3.278282788968594019e+01
3.289665715319179640e+01
analisis/plots/20220615_CPTvariandocompensacion/Data/EITfit/MM_eightLevel_2repumps_python_scripts.py
View file @
19fbd62a
...
...
@@ -88,8 +88,8 @@ def LtempCalculus(beta, drivefreq, forma=1):
Hint
=
np
.
zeros
((
8
,
8
),
dtype
=
np
.
complex_
)
ampg
=
beta
*
drivefreq
ampr
=
beta
*
drivefreq
ampr
=
beta
*
drivefreq
*
(
397
/
866
)
#print('fixed')
Hint
[
0
,
0
]
=
ampg
Hint
[
1
,
1
]
=
ampg
Hint
[
4
,
4
]
=
ampr
...
...
@@ -282,7 +282,7 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp
L0
=
np
.
array
(
np
.
matrix
(
Lfullpartial
)
+
M
)
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax
=
7
nmax
=
3
#print(nmax)
Ltemp
,
Omega
=
LtempCalculus
(
beta
,
drivefreq
)
#print(factor)
...
...
analisis/plots/20220615_CPTvariandocompensacion/Data/RabiVector.txt
0 → 100644
View file @
19fbd62a
-9.606361638711223561e-04
6.949744969572168099e-03
1.486012610301545855e-02
2.277050723645875421e-02
3.068088836990203946e-02
3.859126950334533512e-02
4.650165063678862731e-02
5.441203177023191950e-02
6.232241290367519782e-02
7.023279403711850388e-02
7.814317517056178219e-02
8.605355630400507438e-02
9.396393743744838045e-02
1.018743185708916588e-01
1.097846997043349510e-01
1.176950808377782431e-01
1.256054619712215215e-01
1.335158431046648275e-01
1.414262242381081336e-01
1.493366053715513841e-01
1.572469865049946902e-01
1.651573676384379963e-01
1.730677487718812746e-01
1.809781299053245807e-01
1.888885110387678867e-01
1.967988921722111373e-01
2.047092733056544434e-01
2.126196544390977494e-01
2.205300355725410277e-01
2.284404167059843338e-01
2.363507978394276121e-01
2.442611789728708904e-01
2.521715601063141965e-01
2.600819412397575303e-01
2.679923223732008086e-01
2.759027035066440869e-01
2.838130846400874208e-01
2.917234657735306991e-01
2.996338469069739219e-01
3.075442280404172557e-01
3.154546091738605340e-01
3.233649903073038678e-01
3.312753714407471461e-01
3.391857525741904245e-01
3.470961337076337028e-01
3.550065148410769811e-01
3.629168959745203149e-01
3.708272771079635932e-01
3.787376582414069270e-01
3.866480393748502054e-01
3.945584205082934282e-01
4.024688016417367620e-01
4.103791827751800403e-01
4.182895639086233741e-01
4.261999450420666524e-01
4.341103261755099307e-01
4.420207073089532090e-01
4.499310884423964874e-01
4.578414695758398212e-01
4.657518507092830995e-01
4.736622318427263778e-01
4.815726129761697116e-01
4.894829941096129344e-01
4.973933752430562683e-01
5.053037563764994911e-01
5.132141375099428249e-01
5.211245186433861587e-01
5.290348997768293815e-01
5.369452809102727153e-01
5.448556620437160491e-01
5.527660431771592719e-01
5.606764243106024947e-01
5.685868054440459396e-01
5.764971865774891624e-01
5.844075677109324962e-01
5.923179488443757190e-01
6.002283299778189418e-01
6.081387111112623867e-01
6.160490922447056095e-01
6.239594733781489433e-01
6.318698545115921661e-01
6.397802356450353889e-01
6.476906167784788337e-01
6.556009979119220565e-01
6.635113790453653904e-01
6.714217601788086132e-01
6.793321413122519470e-01
6.872425224456952808e-01
6.951529035791385036e-01
7.030632847125818374e-01
7.109736658460250602e-01
7.188840469794683941e-01
7.267944281129117279e-01
7.347048092463550617e-01
7.426151903797982845e-01
7.505255715132415073e-01
7.584359526466849521e-01
7.663463337801281750e-01
7.742567149135715088e-01
7.821670960470147316e-01
7.900774771804579544e-01
7.979878583139013992e-01
8.058982394473446220e-01
8.138086205807879558e-01
8.217190017142311786e-01
8.296293828476744014e-01
8.375397639811178463e-01
8.454501451145610691e-01
8.533605262480044029e-01
8.612709073814476257e-01
8.691812885148909595e-01
8.770916696483342934e-01
8.850020507817775162e-01
8.929124319152208500e-01
9.008228130486640728e-01
9.087331941821074066e-01
9.166435753155507404e-01
9.245539564489939632e-01
9.324643375824372971e-01
9.403747187158805199e-01
9.482850998493238537e-01
9.561954809827671875e-01
9.641058621162105213e-01
9.720162432496537441e-01
9.799266243830969669e-01
9.878370055165403008e-01
9.957473866499836346e-01
1.003657767783426857e+00
1.011568148916869969e+00
1.019478530050313303e+00
1.027388911183756637e+00
1.035299292317199971e+00
1.043209673450643304e+00
1.051120054584086638e+00
1.059030435717529750e+00
1.066940816850973084e+00
1.074851197984416418e+00
1.082761579117859752e+00
1.090671960251303085e+00
1.098582341384746419e+00
1.106492722518189531e+00
1.114403103651632865e+00
1.122313484785075977e+00
1.130223865918519532e+00
1.138134247051962866e+00
1.146044628185405978e+00
1.153955009318849312e+00
1.161865390452292424e+00
1.169775771585735979e+00
1.177686152719179313e+00
1.185596533852622425e+00
1.193506914986065759e+00
1.201417296119508871e+00
1.209327677252952427e+00
1.217238058386395760e+00
1.225148439519838872e+00
1.233058820653282206e+00
1.240969201786725318e+00
1.248879582920168874e+00
1.256789964053612207e+00
1.264700345187055319e+00
1.272610726320498653e+00
1.280521107453941765e+00
1.288431488587385321e+00
1.296341869720828655e+00
1.304252250854271766e+00
1.312162631987715100e+00
1.320073013121158434e+00
1.327983394254601768e+00
1.335893775388045102e+00
1.343804156521488213e+00
1.351714537654931547e+00
1.359624918788374881e+00
1.367535299921818215e+00
1.375445681055261549e+00
1.383356062188704660e+00
1.391266443322147994e+00
1.399176824455591328e+00
1.407087205589034662e+00
1.414997586722477996e+00
1.422907967855921108e+00
1.430818348989364441e+00
1.438728730122807775e+00
1.446639111256251109e+00
1.454549492389694443e+00
1.462459873523137555e+00
1.470370254656581110e+00
1.478280635790024222e+00
1.486191016923467556e+00
1.494101398056910890e+00
1.502011779190354002e+00
1.509922160323797558e+00
1.517832541457240891e+00
1.525742922590684003e+00
1.533653303724127337e+00
1.541563684857570449e+00
1.549474065991014005e+00
1.557384447124457338e+00
1.565294828257900450e+00
1.573205209391343784e+00
1.581115590524786896e+00
1.589025971658230452e+00
1.596936352791673785e+00
1.604846733925116897e+00
1.612757115058560231e+00
1.620667496192003343e+00
1.628577877325446899e+00
1.636488258458890233e+00
1.644398639592333344e+00
1.652309020725776678e+00
1.660219401859219790e+00
1.668129782992663346e+00
1.676040164126106680e+00
1.683950545259549791e+00
1.691860926392993125e+00
1.699771307526436237e+00
1.707681688659879793e+00
1.715592069793323127e+00
1.723502450926766238e+00
1.731412832060209572e+00
1.739323213193652906e+00
1.747233594327096240e+00
1.755143975460539574e+00
1.763054356593982686e+00
1.770964737727426019e+00
1.778875118860869353e+00
1.786785499994312687e+00
1.794695881127756021e+00
1.802606262261199133e+00
1.810516643394642466e+00
1.818427024528085800e+00
1.826337405661529134e+00
1.834247786794972468e+00
1.842158167928415580e+00
1.850068549061858914e+00
1.857978930195302247e+00
1.865889311328745581e+00
1.873799692462188915e+00
1.881710073595632027e+00
1.889620454729075361e+00
1.897530835862518694e+00
1.905441216995962028e+00
1.913351598129405362e+00
1.921261979262848474e+00
1.929172360396292030e+00
1.937082741529735141e+00
1.944993122663178475e+00
1.952903503796621809e+00
1.960813884930064921e+00
1.968724266063508477e+00
1.976634647196951589e+00
1.984545028330394922e+00
1.992455409463838256e+00
2.000365790597281812e+00
2.008276171730725146e+00
2.016186552864168036e+00
2.024096933997611369e+00
2.032007315131055147e+00
2.039917696264498037e+00
2.047828077397941371e+00
2.055738458531384705e+00
2.063648839664828039e+00
2.071559220798271372e+00
2.079469601931714706e+00
2.087379983065158040e+00
2.095290364198600930e+00
2.103200745332044708e+00
2.111111126465488042e+00
2.119021507598930931e+00
2.126931888732374265e+00
2.134842269865817599e+00
2.142752650999260933e+00
2.150663032132704267e+00
2.158573413266147600e+00
2.166483794399590934e+00
2.174394175533034268e+00
2.182304556666477602e+00
2.190214937799920492e+00
2.198125318933364269e+00
2.206035700066807159e+00
2.213946081200250493e+00
2.221856462333694271e+00
2.229766843467137161e+00
2.237677224600580494e+00
2.245587605734023384e+00
2.253497986867467162e+00
2.261408368000910496e+00
2.269318749134353386e+00
2.277229130267797164e+00
2.285139511401240053e+00
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment