Figura paper. Umbral vs campo magnetico con la calibracion y la teoria superpuesta (la teoria sale de threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica)
Figura 2b) del paper. Umbral vs campo magnetico con la calibracion y la teoria superpuesta (la teoria sale de threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica)
'''
propor=LinearFitPotvsB(longBvec,*popt_expvspot)[-1]/RabiVector[0][-1]#esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica de la carpeta Work (no de Papers)
defLinearFitPotvsB(b,pendiente):
#ordenada=0
returnpendiente*b
#colores=sns.color_palette("mako")
#CamposVector2 = np.loadtxt('CamposVector.txt')
#RabiVector2 = np.loadtxt('RabiVector.txt')
propor=LinearFitPotvsB(longBvec,*popt_expvspot)[-1]/RabiVector2[-1]#esto lo cargo con las lineas de antes
#propor = LinearFitPotvsB(longBvec, *popt_expvspot)[-1]/RabiVector[0][-1] #esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica de la carpeta Work (no de Papers)
plt.plot([f*1e-6forfinConvertBfieldtoLarmor(CamposVector2)],[c*1e-6forcinConvertToRabi(RabiVector2,2*np.pi*1.35e6)],linewidth=1.,color=colores[3])#esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
plt.ylabel(r'Rabi Frequency (MHz)',fontsize=12,fontname='STIXGeneral')
else:
#plt.errorbar([b*1e3 for b in Bvec], MaxsPotsExp/propor, xerr=1e3*MeanError/(2*np.pi)/c, yerr=yerr0/propor, color=colores[0], fmt="o", markersize=4, zorder=3, elinewidth=1)
plt.plot([f*1e-9forfinConvertBfieldtoLarmor(CamposVector2)],[r*1e-12/((2*np.pi)**2)forrinConvertToRabiSq(RabiVector2,2*np.pi*1.35e6)],linestyle='dashed',linewidth=1.,color='grey')#esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
#plt.ylabel(r'Rabi Frequency Squared (MHz$^2$)', fontsize=12, fontname='STIXGeneral')
# plt.plot([f*1e-6 for f in ConvertBfieldtoLarmor(np.array([b*1e3 for b in Bvec]))], MaxsPotsExp,"o", color=colores[0], markersize=4, zorder=3)
# plt.ylim(0,80)
# plt.xlim(0,270)
#plt.plot([f*1e-6 for f in ConvertBfieldtoLarmor(CamposVector2)], [c*1e-6 for c in ConvertToRabi(RabiVector2,2*np.pi*1.35e6)], linewidth=1., color=colores[3]) #esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
plt.xlabel('Larmor Frequency (MHz)',fontsize=12,fontname='STIXGeneral')
#plt.plot([(r/((2*np.pi)**2))*1e-12 for r in ConvertToRabiSq(PotsLong,2*np.pi*1.35e6)],FuncTest(np.array(PotsLong),*popt),color=colorsselected[j], linewidth=0.9, zorder=5)