Commit 20fb3446 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto
parents 098c0376 bbe825e1
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 1 17:58:39 2020
@author: oem
"""
import os
import numpy as np
#os.chdir('/home/oem/Nextcloud/G_liaf/liaf-TrampaAnular/Código General/EIT-CPT/Buenos Aires/Experiment Simulations/CPT scripts/Eight Level 2 repumps')
from threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
import matplotlib.pyplot as plt
import time
from threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
#C:\Users\Usuario\Nextcloud\G_liaf\liaf-TrampaAnular\Código General\EIT-CPT\Buenos Aires\Experiment Simulations\CPT scripts\Eight Level 2 repumps
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
#u = 1e6
u = 33.5e6
B = (u/(2*np.pi))/c
#sg, sp = 0.6, 5 #parámetros de control, saturación del doppler y repump
#rabG, rabP = sg*gPS, sp*gPD #frecuencias de rabi
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
DetDoppler = -36 #42
DetRepumpVec = [DetDoppler+29.6]
Tvec = [0.7] #temperatura en mK
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
#Calculo las resonancias oscuras teóricas
#ResonanciasTeoricas, DRPositivas = CalculoTeoricoDarkResonances_8levels(u/(2*np.pi*1e6), titadoppler, DetDoppler, DetRepump)
#Parametros de la simulacion cpt
center = -45
span = 80
freqMin = center-span*0.5
freqMax = center+span*0.5
""" parametros para tener espectros coherentes
freqMin = -56
freqMax = 14
"""
freqStep = 1e-1
noiseamplitude = 0
RelMinMedido0Vector = []
RelMinMedido1Vector = []
RelMinMedido2Vector = []
RelMinMedido3Vector = []
RelMinMedido4Vector = []
#Sr = np.arange(0, 10, 0.2)
#Sg = np.arange(0.01, 1, 0.05)
#Sp = np.arange(0.1, 6.1, 1)
#Sg = [0.6**2]
#Sp = [2.3**2]
Sg = [1.4]
Sp = [6]
Sr = [11]
i = 0
save = False
showFigures = True
if not showFigures:
plt.ioff()
else:
plt.ion()
fig1, ax1 = plt.subplots()
offsetx = 464
ax1.plot([f-offsetx for f in FreqsDR], CountsDR, 'o')
run = True
Scale = 730
Offset = 600 #600 para 20k cuentas aprox
MaxCoherenceValue = []
for sg in Sg:
for sp in Sp:
rabG, rabP = sg*gPS, sp*gPD
for Ti in Tvec:
T = Ti*1e-3
for DetRepump in DetRepumpVec:
print(T)
for sr in Sr:
rabR = sr*gPD
#MeasuredFreq, MeasuredFluo = GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
if run:
MeasuredFreq4, MeasuredFluo4 = GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
#SmoothFluo = SmoothNoisyCPT(MeasuredFluo, window=9, poly=2)
SmoothFluo4 = MeasuredFluo4
#Scale = max(BestC)/max([100*s for s in SmoothFluo4])
ax1.plot(MeasuredFreq4, [Scale*100*f + Offset for f in SmoothFluo4], label=f'Sr = {sr}')
ax1.axvline(DetDoppler, linestyle='--', linewidth=1)
#if sr != 0:
#ax1.axvline(DetRepump, linestyle='--', linewidth=1)
MaxCoherenceValue.append(np.max(SmoothFluo4))
#print(titaprobe)
ax1.set_xlabel('Detuning Rebombeo (MHz)')
ax1.set_ylabel('Fluorescencia (AU)')
ax1.set_title(f'B: {round(B, 2)} G, Sdop: {round(sg, 2)}, Sp: {round(sp, 2)}, Sr: {round(sr, 2)}, lw: {lw} MHz, T: {Ti} mK')
#ax1.set_ylim(0, 8)
#ax1.axvline(DetDoppler, linestyle='dashed', color='red', linewidth=1)
#ax1.axvline(DetRepump, linestyle='dashed', color='black', linewidth=1)
#ax1.set_title('Pol Doppler y Repump: Sigma+ Sigma-, Pol Probe: PI')
#ax1.legend()
ax1.grid()
print (f'{i+1}/{len(Sg)*len(Sp)}')
i = i + 1
if save:
plt.savefig(f'Mapa_plots_100k_1mk/CPT_SMSM_sdop{round(sg, 2)}_sp{round(sp, 2)}_sr{round(sr, 2)}.jpg')
ax1.legend()
"""
plt.figure()
plt.plot(Sr, MaxCoherenceValue, 'o')
plt.xlabel('Sr')
plt.ylabel('Coherence')
"""
"""
plt.figure()
plt.plot(MeasuredFreq, [100*f for f in SmoothFluo], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.4, 1.8, 0.2))
plt.ylim(0.5, 1.6)
plt.grid()
plt.figure()
plt.plot(MeasuredFreq4, [100*f for f in SmoothFluo4], color='darkred')
plt.xlabel('Desintonía 866 (MHz)')
plt.ylabel('Fluorescencia (A.U.)')
plt.axvline(-30, color='darkblue', linewidth=1.2, linestyle='--')
plt.yticks(np.arange(0.8, 2.4, 0.4))
plt.grid()
"""
#%%
from scipy.optimize import curve_fit
T = 0.5e-3
sg = 0.7
sp = 6
sr = 0
DetDoppler = -14
DetRepump = 0
FitsSp = []
FitsOffset = []
Sg = [0.87]
def FitEIT(freqs, SP, offset):
MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(0.87, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
FinalFluo = [f*43000 + 2685 for f in MeasuredFluo]
return FinalFluo
freqs = [f-offsetx+32 for f in FreqsDR]
freqslong = np.arange(min(freqs), max(freqs)+freqs[1]-freqs[0], 0.1*(freqs[1]-freqs[0]))
popt, pcov = curve_fit(FitEIT, freqs, CountsDR, p0=[5, 700], bounds=(0, [10, 1e6]))
FitsSp.append(popt[0])
FitsOffset.append(popt[1])
print(popt)
FittedEIT = FitEIT(freqslong, *popt)
plt.figure()
plt.errorbar(freqs, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', capsize=2, markersize=2)
plt.plot(freqslong, FitEIT(freqslong, *popt))
plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {T*1e3} mK, detDop: {DetDoppler} MHz')
np.savetxt('CPT_measured.txt', np.transpose([freqs, CountsDR]))
np.savetxt('CPT_fitted.txt', np.transpose([freqslong, FittedEIT]))
This diff is collapsed.
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230804_RotationalDopplerShift_v2/Data')
"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion colineal (insensible a velocidad perpendicular)
y configuracion desplazada (sensible).
Primero una gaussiana variando la potencia (power_files).
Luego, variando compensacion con electrodo DCA y con electrodo OVEN.
"""
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
CONTCOMP_FILES = """VaryingCompContinuously/000014219-IR_Scan_withcal_optimized
VaryingCompContinuously/000014223-IR_Scan_withcal_optimized
VaryingCompContinuously/000014232-IR_Scan_withcal_optimized
"""
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CONTCOMP_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
ContcompCounts_merged = []
ContcompVoltages = []
ContcompFrequencies = []
for i, fname in enumerate(CONTCOMP_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
#Amplitudes.append(np.array(data['datasets']['amplitudes']))
ContcompCounts_merged.append(np.array(data['datasets']['data_array']))
ContcompVoltages.append(np.array(data['datasets']['scanning_voltages']))
ContcompFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
ContcompCounts = []
for k in range(len(ContcompFrequencies)):
ContcompCounts.append(Split(ContcompCounts_merged[k],len(ContcompFrequencies[k])))
#%%
#gaussiano
from scipy.signal import savgol_filter as sf
bkgr = 40*5
#bkgr = 0
def arraytreatment(array):
#return (array[0]-array[1])/(array[0]-bkgr)
return array[1]
Gaussian_measurement = ContcompCounts[0]
Gaussian_voltages = ContcompVoltages[0]
Gaussian_dr1depths = []
for kk in range(len(Gaussian_voltages)):
Gaussian_dr1depths.append(arraytreatment(Gaussian_measurement[kk]))
OAMcol_measurement = ContcompCounts[1]
OAMcol_voltages = ContcompVoltages[1]
OAMcol_dr1depths = []
for kk in range(len(OAMcol_voltages)):
OAMcol_dr1depths.append(arraytreatment(OAMcol_measurement[kk]))
OAMdesp_measurement = ContcompCounts[2]
OAMdesp_voltages = ContcompVoltages[2]
OAMdesp_dr1depths = []
for kk in range(len(OAMdesp_voltages)):
OAMdesp_dr1depths.append(arraytreatment(OAMdesp_measurement[kk]))
OAMcol = sf(OAMcol_dr1depths, 15, 2)
OAMdesp = sf(OAMdesp_dr1depths, 15, 2)
gauss = sf(Gaussian_dr1depths, 15, 2)
plt.figure()
# plt.plot(Gaussian_voltages, gauss, color='red', label='gaussian', alpha=0.8, zorder=0)
# plt.plot(OAMcol_voltages, OAMcol, color='blue', label='oam colineal', alpha=0.8, zorder=0)
# plt.plot(OAMdesp_voltages, OAMdesp, color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
plt.plot(Gaussian_voltages, Gaussian_dr1depths,'o', color='red', label='gaussian')
plt.plot(OAMcol_voltages, OAMcol_dr1depths,'o', color='blue', label='oam colineal')
plt.plot(OAMdesp_voltages, OAMdesp_dr1depths,'o', color='purple', label='oam desplaz')
plt.title('Profundidad de resonancia %')
plt.grid()
plt.legend()
#%%
#indexcomp = 20
#end = 30
indexcomp=30
end = len(Gaussian_voltages)
plt.figure()
plt.plot(Gaussian_voltages[:end], [g/gauss[indexcomp] for g in gauss][:end], 'o', color='red', label='gaussian', alpha=0.8, zorder=0)
plt.plot(OAMcol_voltages[:end], [g/OAMcol[indexcomp] for g in OAMcol][:end], 'o', color='blue', label='oam colineal', alpha=0.8, zorder=0)
plt.plot(OAMdesp_voltages[:end], [g/OAMdesp[indexcomp] for g in OAMdesp][:end], 'o', color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
# plt.plot(Gaussian_voltages, Gaussian_dr1depths,'o', color='red', label='gaussian')
# plt.plot(OAMcol_voltages, OAMcol_dr1depths,'o', color='blue', label='oam colineal')
# plt.plot(OAMdesp_voltages, OAMdesp_dr1depths,'o', color='purple', label='oam desplaz')
plt.title(f'Tasa de variacion respecto a valor de referencia {Gaussian_voltages[indexcomp]} mV')
plt.axvline(Gaussian_voltages[indexcomp])
plt.grid()
plt.legend()
#%%
"""
Resonancias DD variando la potencia del IR2
"""
powermedvec = [0,1,2]
AmpsVecs = [0.05, 0.08, 0.12, 0.17, 0.22]
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in PowerIR1_Freqs[med][1:]], [c for c in PowerCounts[med][1:]], '-o', markersize=2, label=f'amp:{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Variando potencia de IR2 para potencia de IR1 fija')
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230804_RotationalDopplerShift_v2/Data')
"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion +2/+2 y +2/-2 (usando pentaprisma)
"""
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
LOC_FILES = """VaryingBeamlocation/000014331-IR_Scan_withcal_optimized
VaryingBeamlocation/000014332-IR_Scan_withcal_optimized
VaryingBeamlocation/000014333-IR_Scan_withcal_optimized
VaryingBeamlocation/000014334-IR_Scan_withcal_optimized
VaryingBeamlocation/000014357-IR_Scan_withcal_optimized
VaryingBeamlocation/000014358-IR_Scan_withcal_optimized
"""
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(LOC_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
LocCounts = []
LocFrequencies = []
for i, fname in enumerate(LOC_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
#Amplitudes.append(np.array(data['datasets']['amplitudes']))
LocCounts.append(np.array(data['datasets']['counts_spectrum']))
LocFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
#%%
"""
Resonancias DD configuracion +2/+2
"""
powermedvec = [0,1,2,3]
AmpsVecs = ['Colineal', 'Desplazada', 'Colineal', 'Desplazada']
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', markersize=2, label=f'{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Espectros para distintas geometrías')
#%%
"""
Resonancias DD configuracion +2/-2 (usando un pentaprisma)
"""
powermedvec = [4,5]
AmpsVecs = ['Colineal', 'Desplazada']
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in LocFrequencies[med][1:]], [c for c in LocCounts[med][1:]], '-o', markersize=2, label=f'{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Espectros para distintas geometrías')
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230804_RotationalDopplerShift_v2/Data')
"""
en este codigo ploteo espectros CPT de resonancias D-D para configuracion colineal (insensible a velocidad perpendicular)
y configuracion desplazada (sensible).
Primero una gaussiana variando la potencia (power_files).
Luego, variando compensacion con electrodo DCA y con electrodo OVEN.
"""
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
TEMP_FILES = """VaryingTemp/000014316-IR_Scan_withcal_optimized
"""
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(TEMP_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
TempCounts_merged = []
TempTimes = []
TempFrequencies = []
for i, fname in enumerate(TEMP_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
#Amplitudes.append(np.array(data['datasets']['amplitudes']))
TempCounts_merged.append(np.array(data['datasets']['data_array']))
TempTimes.append(np.array(data['datasets']['scanning_heattimes']))
TempFrequencies.append(np.array(data['datasets']['IR1_Frequencies']))
TempCounts = []
for k in range(len(TempFrequencies)):
TempCounts.append(Split(TempCounts_merged[k],len(TempFrequencies[k])))
#%%
#gaussiano
from scipy.signal import savgol_filter as sf
bkgr = 40*5
#bkgr = 0
def arraytreatment0(array):
#return (array[0]-array[2])/(array[0]-bkgr)
return array[0]
def arraytreatment1(array):
#return (array[0]-array[1])/(array[0]-bkgr)
return array[1]
def arraytreatment2(array):
#return (array[0]-array[2])/(array[0]-bkgr)
return array[2]
# def errorarraytreatment1(array):
# return (array[0]-array[1])/(array[0]-bkgr)
# #return array[1]
# def errorarraytreatment2(array):
# return (array[0]-array[2])/(array[0]-bkgr)
# #return array[1]
Gaussian_measurement = TempCounts[0]
Gaussian_times = TempTimes[0]
Gaussian_dr0depths = []
Gaussian_dr1depths = []
Gaussian_dr2depths = []
ErrorGaussian_dr1depths = []
ErrorGaussian_dr2depths = []
for kk in range(len(Gaussian_times)):
Gaussian_dr0depths.append(arraytreatment0(Gaussian_measurement[kk]))
Gaussian_dr1depths.append(arraytreatment1(Gaussian_measurement[kk]))
Gaussian_dr2depths.append(arraytreatment2(Gaussian_measurement[kk]))
lim = 9
plt.figure()
# plt.plot(Gaussian_voltages, gauss, color='red', label='gaussian', alpha=0.8, zorder=0)
# plt.plot(OAMcol_voltages, OAMcol, color='blue', label='oam colineal', alpha=0.8, zorder=0)
# plt.plot(OAMdesp_voltages, OAMdesp, color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
plt.plot(Gaussian_times[:lim], Gaussian_dr0depths[:lim],'o', color='black', label='gaussian')
plt.plot(Gaussian_times[:lim], Gaussian_dr1depths[:lim],'o', color='red', label='gaussian')
plt.plot(Gaussian_times[:lim], Gaussian_dr2depths[:lim],'o', color='blue', label='gaussian')
#plt.xlim(-0.002, 0.022)
# plt.ylim(0,0.5)
plt.title('Profundidad de resonancia %')
plt.grid()
plt.legend()
#%%
#indexcomp = 20
#end = 30
indexcomp=30
end = len(Gaussian_voltages)
plt.figure()
plt.plot(Gaussian_voltages[:end], [g/gauss[indexcomp] for g in gauss][:end], 'o', color='red', label='gaussian', alpha=0.8, zorder=0)
plt.plot(OAMcol_voltages[:end], [g/OAMcol[indexcomp] for g in OAMcol][:end], 'o', color='blue', label='oam colineal', alpha=0.8, zorder=0)
plt.plot(OAMdesp_voltages[:end], [g/OAMdesp[indexcomp] for g in OAMdesp][:end], 'o', color='purple', label='oam desplaz',alpha = 0.8, zorder=0)
# plt.plot(Gaussian_voltages, Gaussian_dr1depths,'o', color='red', label='gaussian')
# plt.plot(OAMcol_voltages, OAMcol_dr1depths,'o', color='blue', label='oam colineal')
# plt.plot(OAMdesp_voltages, OAMdesp_dr1depths,'o', color='purple', label='oam desplaz')
plt.title(f'Tasa de variacion respecto a valor de referencia {Gaussian_voltages[indexcomp]} mV')
plt.axvline(Gaussian_voltages[indexcomp])
plt.grid()
plt.legend()
#%%
"""
Resonancias DD variando la potencia del IR2
"""
powermedvec = [0,1,2]
AmpsVecs = [0.05, 0.08, 0.12, 0.17, 0.22]
plt.figure()
ftrap = 22.1
DR1 = 435.8
DR2 = 444.2
jj=0
for med in powermedvec:
plt.plot([2*f*1e-6 for f in PowerIR1_Freqs[med][1:]], [c for c in PowerCounts[med][1:]], '-o', markersize=2, label=f'amp:{AmpsVecs[jj]}')
jj=jj+1
plt.xlabel('Frecuencia')
plt.ylabel('Counts')
plt.grid()
plt.legend()
plt.title('Variando potencia de IR2 para potencia de IR1 fija')
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment