Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
artiq_experiments
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nicolas Nunez Barreto
artiq_experiments
Commits
2fdd462f
Commit
2fdd462f
authored
Jan 04, 2024
by
Marcelo Luda
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
pulí un poco el lolo-superajuste
parent
6e4b9258
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
61 additions
and
52 deletions
+61
-52
lolo_analisis_superajuste.py
.../20231123_CPTconmicromocion3/lolo_analisis_superajuste.py
+61
-52
No files found.
analisis/plots/20231123_CPTconmicromocion3/lolo_analisis_superajuste.py
View file @
2fdd462f
...
...
@@ -405,7 +405,7 @@ for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,sele
ax
.
grid
(
True
,
ls
=
":"
)
print
(
f
'listo med {selectedcurve}'
)
print
(
popt_3_SA
)
#
print(popt_3_SA)
for
ax
in
axx
[:,
0
]:
...
...
@@ -452,58 +452,86 @@ ax.set_xticks(num_med)
ax
.
set_xlabel
(
'Num. de medición'
)
#%%
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Endcap hiperbola (con residuos)
"""
Grafico distintas variables que salieron del SUper ajuste
Veamos cómo varía el Beta con el voltaje del endcap
"""
import
seaborn
as
sns
paleta
=
sns
.
color_palette
(
"rocket"
)
voltages_dcA
=
Voltages
[
0
][
1
:
10
]
I
=
slice
(
None
,
9
)
voltages_dcA
=
Voltages
[
0
][
SelectedCurveVec
]
def
lineal
(
x
,
a
,
b
):
return
a
*
x
+
b
def
hiperbola
(
x
,
a
,
b
,
c
,
x0
):
return
a
*
np
.
sqrt
(((
x
-
x0
)
**
2
+
c
**
2
))
+
b
def
hiperbola
(
x
,
a
,
y0
,
b
,
x0
):
"""
Hiperbola de ecuación:
1 =(y-y0)²/a² - (x-x0)²/b²
"""
return
a
*
np
.
sqrt
(((
x
-
x0
)
**
2
+
b
**
2
))
+
y0
hiperbola_or_linear
=
Tru
e
es_hiperbola
=
Fals
e
if
hiperbola_or_linear
:
popthip
,
pcovhip
=
curve_fit
(
hiperbola
,
voltages_dcA
,
Betas_vec
,
p0
=
(
100
,
0.1
,
1
,
-
0.15
))
# par_inicial = (100,0.1,1,-0.15)
# a y0 b x0
par_inicial
=
(
12
,
0.1
,
1
,
-
0.13
)
xhip
=
np
.
linspace
(
-
0.23
,
0.005
,
200
)
plt
.
figure
()
plt
.
errorbar
(
voltages_dcA
,
Betas_vec
,
yerr
=
ErrorBetas_vec
,
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
1
])
plt
.
plot
(
xhip
,
hiperbola
(
xhip
,
*
popthip
))
plt
.
xlabel
(
'Endcap voltage (V)'
)
plt
.
ylabel
(
'Modulation factor'
)
plt
.
grid
()
popthip
,
pcovhip
=
curve_fit
(
hiperbola
,
voltages_dcA
[
I
],
Betas_vec
[
I
],
p0
=
par_inicial
)
xhip
=
np
.
linspace
(
-
0.23
,
0.005
,
200
)
else
:
poptini
,
pcovini
=
curve_fit
(
lineal
,
voltages_dcA
[
0
:
3
],
Betas_vec
[
0
:
3
])
poptfin
,
pcovfin
=
curve_fit
(
lineal
,
voltages_dcA
[
4
:],
Betas_vec
[
4
:])
# plt.figure()
# plt.errorbar(voltages_dcA[I],Betas_vec[I],yerr=ErrorBetas_vec[I],fmt='o',capsize=5,markersize=5,color=paleta[1])
# plt.plot(xhip,hiperbola(xhip,*popthip))
# # plt.plot(xhip,hiperbola(xhip,*par_inicial),'--',color='red')
# plt.xlabel('Endcap voltage (V)')
# plt.ylabel('Modulation factor')
# plt.grid()
minimum_voltage
=
-
(
poptini
[
1
]
-
poptfin
[
1
])
/
(
poptini
[
0
]
-
poptfin
[
0
])
#voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor
=
lineal
(
minimum_voltage
,
*
poptini
)
#es lo mismo si pongo *poptfin
xini
=
np
.
linspace
(
-
0.23
,
-
0.13
,
100
)
xfin
=
np
.
linspace
(
-
0.15
,
0.005
,
100
)
plt
.
figure
()
plt
.
errorbar
(
voltages_dcA
,
Betas_vec
,
yerr
=
ErrorBetas_vec
,
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
1
])
plt
.
plot
(
xini
,
lineal
(
xini
,
*
poptini
))
plt
.
plot
(
xfin
,
lineal
(
xfin
,
*
poptfin
))
plt
.
axvline
(
minimum_voltage
,
linestyle
=
'dashed'
,
color
=
'grey'
)
plt
.
xlabel
(
'Endcap voltage (V)'
)
plt
.
ylabel
(
'Modulation factor'
)
plt
.
grid
()
fig
,
axx
=
plt
.
subplots
(
2
,
figsize
=
(
10
,
7
)
,
constrained_layout
=
True
,
sharex
=
True
,
gridspec_kw
=
dict
(
height_ratios
=
[
10
,
2
]))
fig
.
set_constrained_layout_pads
(
w_pad
=
2
/
72
,
h_pad
=
2
/
72
,
hspace
=
0
,
wspace
=
0
)
ax
=
axx
[
0
]
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
],
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
1
])
ax
.
plot
(
xhip
,
hiperbola
(
xhip
,
*
popthip
))
# plt.plot(xhip,hiperbola(xhip,*par_inicial),'--',color='red')
ax
.
set_ylabel
(
'Modulation factor'
)
ax
=
axx
[
1
]
ax
.
errorbar
(
voltages_dcA
[
I
],
Betas_vec
[
I
]
-
hiperbola
(
voltages_dcA
[
I
],
*
popthip
),
yerr
=
ErrorBetas_vec
[
I
],
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
1
])
ax
.
set_ylabel
(
'Res.'
)
ax
.
set_xlabel
(
'Endcap voltage (V)'
)
for
ax
in
axx
:
ax
.
grid
(
True
,
ls
=
":"
,
color
=
'lightgray'
)
print
([
t
*
1e3
for
t
in
Temp_vec
])
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Este hay que armarlo aún
plt
.
figure
()
plt
.
errorbar
(
voltages_dcA
,[
t
*
1e3
for
t
in
Temp_vec
],
yerr
=
[
t
*
1e3
for
t
in
ErrorTemp_vec
],
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
3
])
# plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
...
...
@@ -514,30 +542,11 @@ plt.ylabel('Temperature (mK)')
plt
.
grid
()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def
hiperbola
(
x
,
a
,
b
,
c
,
x0
):
return
a
*
np
.
sqrt
(((
x
-
x0
)
**
2
+
c
**
2
))
+
b
popthip
,
pcovhip
=
curve_fit
(
hiperbola
,
voltages_dcA
,
Betas_vec
,
p0
=
(
100
,
0.1
,
1
,
-
0.15
))
xhip
=
np
.
linspace
(
-
0.23
,
0.005
,
200
)
plt
.
figure
()
plt
.
errorbar
(
voltages_dcA
,
Betas_vec
,
yerr
=
ErrorBetas_vec
,
fmt
=
'o'
,
capsize
=
5
,
markersize
=
5
,
color
=
paleta
[
1
])
plt
.
plot
(
xhip
,
hiperbola
(
xhip
,
*
popthip
))
plt
.
xlabel
(
'Endcap voltage (V)'
)
plt
.
ylabel
(
'Modulation factor'
)
plt
.
grid
()
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Ajuste de los betas y la temperatura
#%%
from
scipy.special
import
jv
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment