Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
artiq_experiments
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nicolas Nunez Barreto
artiq_experiments
Commits
3e350a31
Commit
3e350a31
authored
Apr 22, 2024
by
Nicolas Nunez Barreto
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
https://code.df.uba.ar/nnunez/artiq_experiments
parents
6858949d
b6f6ebf4
Changes
9
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
296 additions
and
12 deletions
+296
-12
000003283-LaserPowerCalibration.h5
...owerStabilization/Data/000003283-LaserPowerCalibration.h5
+0
-0
ScanPlotter.py
analisis/plots/20210831_PowerStabilization/ScanPlotter.py
+112
-7
CPT_plotter_20231218.py
...218_CPT_DosLaseres_Reflotoajustes/CPT_plotter_20231218.py
+10
-0
lolo_CPT_plotter_20231218.py
...PT_DosLaseres_Reflotoajustes/lolo_CPT_plotter_20231218.py
+2
-2
CPT_plotter_RDE.py
...s/20240312_RotationalDopplerShift_news/CPT_plotter_RDE.py
+168
-0
000017121-IR_Scan_withcal_optimized.h5
...hift_news/Data/CPT/000017121-IR_Scan_withcal_optimized.h5
+0
-0
000017123-IR_Scan_withcal_optimized.h5
...hift_news/Data/CPT/000017123-IR_Scan_withcal_optimized.h5
+0
-0
000017170-IR_Scan_withcal_optimized.h5
...hift_news/Data/CPT/000017170-IR_Scan_withcal_optimized.h5
+0
-0
RDS_piezobeamsizes_2024_invariance.py
...alDopplerShift_news/RDS_piezobeamsizes_2024_invariance.py
+4
-3
No files found.
analisis/plots/20210831_PowerStabilization/Data/000003283-LaserPowerCalibration.h5
0 → 100644
View file @
3e350a31
File added
analisis/plots/20210831_PowerStabilization/ScanPlotter.py
View file @
3e350a31
...
...
@@ -7,9 +7,23 @@ import ast
from
scipy.optimize
import
curve_fit
import
os
from
scipy
import
interpolate
"""
Programa que evidencia la calibración en frecuecnai de un AOM IR
Hay que buscar en otros archivos si no hay una medicion asi pero sin variar la potencia del AOM, o sea, sin calibrar,
para comparar y poiner la curva antes y despues de calibrar
"""
# Solo levanto algunos experimentos
ALL_FILES
=
"""000003316-LaserPowerCalibration.h5"""
ALL_FILES
=
"""000003316-LaserPowerCalibration.h5
"""
FILES_WITHOUTC
=
"""000003283-LaserPowerCalibration.h5
"""
os
.
chdir
(
'/home/nico/Documents/artiq_experiments/analisis/plots/20210831_PowerStabilization/Data'
)
def
SeeKeys
(
files
):
for
i
,
fname
in
enumerate
(
files
.
split
()):
...
...
@@ -21,6 +35,10 @@ print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\artiq_master\results\2021-07-14\16
Measurements_vec
=
[]
Calibration_amps_vec
=
[]
Calibration_freqs_vec
=
[]
for
i
,
fname
in
enumerate
(
ALL_FILES
.
split
()):
print
(
i
)
print
(
fname
)
...
...
@@ -29,20 +47,107 @@ for i, fname in enumerate(ALL_FILES.split()):
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Calibration_amps
=
np
.
array
(
data
[
'datasets'
][
'Test_Experiment_amps'
])
Calibration_freqs
=
np
.
array
(
data
[
'datasets'
][
'Test_Experiment_freqs'
])
Measurements
=
np
.
array
(
data
[
'datasets'
][
'Test_Measured_PD_IR_counts'
])
Calibration_amps_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Test_Experiment_amps'
]))
Calibration_freqs_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Test_Experiment_freqs'
]))
Measurements_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Test_Measured_PD_IR_counts'
]))
NocMeasurements_vec
=
[]
NocCalibration_amps_vec
=
[]
NocCalibration_freqs_vec
=
[]
NocCalibration_freqsraw_vec
=
[]
NocCounts_vec
=
[]
for
i
,
fname
in
enumerate
(
FILES_WITHOUTC
.
split
()):
print
(
i
)
print
(
fname
)
data
=
h5py
.
File
(
fname
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
NocCalibration_amps_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Calibration_amps_IR'
]))
NocCalibration_freqs_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Calibration_freqs_IR'
]))
NocCalibration_freqsraw_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'Calibration_freqs_IR_Raw'
]))
NocCounts_vec
.
append
(
np
.
array
(
data
[
'datasets'
][
'PD_IR_counts'
]))
#%%
plt
.
figure
()
plt
.
hist
(
Measurements
)
plt
.
hist
(
Measurements_vec
[
0
])
#%%
k
=
0
plt
.
figure
()
plt
.
plot
(
Calibration_freqs_vec
[
k
],
Measurements_vec
[
k
],
'o'
)
plt
.
ylim
(
0
,
1
)
print
(
len
(
Measurements_vec
[
k
]))
#%%
k
=
0
plt
.
figure
()
plt
.
plot
([
f
*
1e-6
for
f
in
Calibration_freqs_vec
[
k
]],
Calibration_amps_vec
[
k
],
'o'
,
markersize
=
5
,
color
=
'purple'
)
plt
.
xlabel
(
'Frecuencia AOM (MHz)'
)
plt
.
ylabel
(
'Amplitud calibrada (a.u.)'
)
#%%
"""
Sin calibrar. Estas son meds para distintas amps
"""
plt
.
figure
()
plt
.
plot
(
Calibration_freqs
,
Calibration_amps
,
'o'
)
plt
.
plot
([
f
*
1e-6
for
f
in
NocCalibration_freqs_vec
[
k
]],
NocCounts_vec
[
k
],
'o'
,
markersize
=
5
,
color
=
'purple'
)
plt
.
xlabel
(
'Frecuencia AOM (MHz)'
)
plt
.
ylabel
(
'Voltaje PD (V)'
)
plt
.
ylim
(
0
,
1
)
#extraigo un chunk
chu
=
3
plt
.
figure
()
plt
.
plot
(
Calibration_freqs
,
Measurements
,
'o'
)
plt
.
plot
([
f
*
1e-6
for
f
in
NocCalibration_freqs_vec
[
k
]][
51
*
chu
:
51
*
(
chu
+
1
)],
NocCounts_vec
[
k
][
51
*
chu
:
51
*
(
chu
+
1
)],
'o'
,
markersize
=
5
,
color
=
'purple'
)
plt
.
xlabel
(
'Frecuencia AOM (MHz)'
)
plt
.
ylabel
(
'Voltaje PD (V)'
)
plt
.
ylim
(
0
,
1
)
Counts_noc
=
NocCounts_vec
[
k
][
51
*
chu
:
51
*
(
chu
+
1
)]
#%%
"""
Figura tesis
"""
import
seaborn
as
sns
paleta
=
sns
.
color_palette
(
"bright"
)
fs
=
10
ms
=
4
fig
,
ax
=
plt
.
subplots
(
2
,
sharex
=
True
,
figsize
=
(
6
,
6
))
fig
.
subplots_adjust
(
hspace
=
0.1
)
ax
[
0
]
.
plot
([
f
*
1e-6
for
f
in
Calibration_freqs_vec
[
k
]],
Measurements_vec
[
k
],
'o-'
,
color
=
paleta
[
0
],
markersize
=
ms
,
label
=
'Con calibración'
)
ax
[
0
]
.
plot
([
f
*
1e-6
for
f
in
Calibration_freqs_vec
[
k
]],
Counts_noc
[:
-
1
],
'o-'
,
color
=
paleta
[
1
],
markersize
=
ms
,
label
=
'Sin calibración'
)
ax
[
0
]
.
set_ylabel
(
'Voltaje PD (V)'
,
fontsize
=
fs
,
fontname
=
'STIXgeneral'
)
ax
[
0
]
.
set_yticks
([
0.3
,
0.35
,
0.4
,
0.45
,
0.5
])
ax
[
0
]
.
set_yticklabels
([
0.3
,
0.35
,
0.4
,
0.45
,
0.5
],
fontsize
=
fs
,
fontname
=
'STIXGeneral'
)
ax
[
0
]
.
set_ylim
(
0.26
,
0.54
)
ax
[
0
]
.
legend
(
prop
=
{
'family'
:
'STIXGeneral'
,
'size'
:
fs
})
ax
[
1
]
.
plot
([
f
*
1e-6
for
f
in
Calibration_freqs_vec
[
k
]],
Calibration_amps_vec
[
k
],
'^-'
,
markersize
=
ms
,
color
=
paleta
[
0
],
alpha
=
0.6
)
#ax[1].axhline(0.23,linewidth=ms-1,color=paleta[1],alpha=0.5,linestyle='dashed')
ax
[
1
]
.
set_ylim
(
0.19
,
0.274
)
ax
[
1
]
.
set_ylabel
(
'Amplitud calibrada (a.u.)'
,
fontsize
=
fs
,
fontname
=
'STIXgeneral'
)
ax
[
1
]
.
set_yticks
([
0.19
,
0.20
,
0.21
,
0.22
,
0.23
,
0.24
,
0.25
,
0.26
,
0.27
])
ax
[
1
]
.
set_yticklabels
([
0.19
,
0.20
,
0.21
,
0.22
,
0.23
,
0.24
,
0.25
,
0.26
,
0.27
],
fontsize
=
fs
,
fontname
=
'STIXGeneral'
)
ax
[
1
]
.
set_xticks
([
190
,
200
,
210
,
220
,
230
])
ax
[
1
]
.
set_xticklabels
([
190
,
200
,
210
,
220
,
230
],
fontsize
=
fs
,
fontname
=
'STIXGeneral'
)
ax
[
1
]
.
set_xlabel
(
'Frecuencia AOM (MHz)'
,
fontsize
=
fs
,
fontname
=
'STIXgeneral'
)
#ax[1].legend(prop={'family': 'STIXGeneral', 'size': fs})
plt
.
savefig
(
'/home/nico/Nextcloud/Nico/Doctorado/Tesis/Tesis_doctorado/Chapters/figures/Cap4/calibAOM.pdf'
)
...
...
analisis/plots/20231218_CPT_DosLaseres_Reflotoajustes/CPT_plotter_20231218.py
View file @
3e350a31
...
...
@@ -12,6 +12,9 @@ from scipy import interpolate
CPT con tres laseres pero lso dos IR son el mismo entonces las DD son mas finas
"""
os
.
chdir
(
'/home/nico/Documents/artiq_experiments/analisis/plots/20231218_CPT_DosLaseres_Reflotoajustes/Data/'
)
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211223_CPT_DosLaseres_v07_ChristmasSpecial\Data
ALL_FILES
=
"""000016420-IR_Scan_withcal_optimized
...
...
@@ -140,6 +143,13 @@ if do_fit:
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
FittedEITpi_1_long
,
Detunings_1_long
=
FitEIT_MM_1ion
(
freqslong
,
*
popt_1
,
plot
=
True
)
DetDop
=
popt_1
[
1
]
DetRep
=
popt_1
[
2
]
Sdop
=
popt_1
[
3
]
Spr
=
popt_1
[
4
]
Srep
=
popt_1
[
5
]
#%%
plt
.
figure
()
...
...
analisis/plots/20231218_CPT_DosLaseres_Reflotoajustes/lolo_CPT_plotter_20231218.py
View file @
3e350a31
...
...
@@ -89,8 +89,8 @@ plt.legend()
from
scipy.optimize
import
curve_fit
import
time
cwd
=
os
.
getcwd
()
os
.
chdir
(
'../20231123_CPTconmicromocion3'
)
#
cwd = os.getcwd()
#
os.chdir('../20231123_CPTconmicromocion3')
from
Data.EITfit.lolo_modelo_full_3niveles
import
GenerateNoisyCPT_fit
os
.
chdir
(
cwd
)
...
...
analisis/plots/20240312_RotationalDopplerShift_news/CPT_plotter_RDE.py
0 → 100644
View file @
3e350a31
import
h5py
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
sys
import
re
import
ast
from
scipy.optimize
import
curve_fit
import
os
from
scipy
import
interpolate
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os
.
chdir
(
'/home/nico/Documents/artiq_experiments/analisis/plots/20240312_RotationalDopplerShift_news/Data/CPT/'
)
"""
CPT con tres laseres pero lso dos IR son el mismo entonces las DD son mas finas
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211223_CPT_DosLaseres_v07_ChristmasSpecial\Data
ALL_FILES
=
"""000017121-IR_Scan_withcal_optimized
000017123-IR_Scan_withcal_optimized
000017170-IR_Scan_withcal_optimized
"""
def
SeeKeys
(
files
):
for
i
,
fname
in
enumerate
(
files
.
split
()):
data
=
h5py
.
File
(
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
print
(
fname
)
print
(
list
(
data
[
'datasets'
]
.
keys
()))
print
(
SeeKeys
(
ALL_FILES
))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts
=
[]
Freqs
=
[]
AmpTisa
=
[]
UVCPTAmp
=
[]
No_measures
=
[]
for
i
,
fname
in
enumerate
(
ALL_FILES
.
split
()):
print
(
str
(
i
)
+
' - '
+
fname
)
#print(fname)
data
=
h5py
.
File
(
fname
+
'.h5'
,
'r'
)
# Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs
.
append
(
np
.
array
(
data
[
'datasets'
][
'IR1_Frequencies'
]))
Counts
.
append
(
np
.
array
(
data
[
'datasets'
][
'counts_spectrum'
]))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
#UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
#No_measures.append(np.array(data['datasets']['no_measures']))
#%%
#Barriendo angulo del IR con tisa apagado
jvec
=
[
1
]
jselected
=
jvec
plt
.
figure
()
i
=
0
for
j
in
jvec
:
if
j
in
jselected
:
plt
.
errorbar
([
2
*
f
*
1e-6
for
f
in
Freqs
[
j
]],
Counts
[
j
],
yerr
=
np
.
sqrt
(
Counts
[
j
]),
fmt
=
'o'
,
capsize
=
2
,
markersize
=
2
)
#plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3)
i
=
i
+
1
plt
.
xlabel
(
'Frecuencia (MHz)'
)
plt
.
ylabel
(
'counts'
)
plt
.
grid
()
plt
.
legend
()
#%%
from
scipy.optimize
import
curve_fit
import
time
phidoppler
,
titadoppler
=
0
,
90
phirepump
,
titarepump
=
0
,
90
phiprobe
=
0
titaprobe
=
0.1
Temp
=
0.5e-3
sg
=
0.544
sp
=
4.5
sr
=
0
DetRepump
=
0
lw
=
0.1
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
=
lw
,
lw
,
lw
#ancho de linea de los laseres
u
=
32.5e6
#B = (u/(2*np.pi))/c
gPS
,
gPD
,
=
2
*
np
.
pi
*
21.58e6
,
2
*
np
.
pi
*
1.35e6
alpha
=
0
drivefreq
=
2
*
np
.
pi
*
22.135
*
1e6
noiseamplitude
=
0
selectedcurve
=
1
FreqsDR
=
Freqs
[
selectedcurve
]
CountsDR
=
Counts
[
selectedcurve
]
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
CircPr
=
1
alpha
=
0
def
FitEIT_MM_1ion
(
Freqs
,
offset
,
DetDoppler
,
DetRepump
,
SG
,
SP
,
SR
,
SCALE1
,
OFFSET
,
TEMP
,
U
,
plot
=
False
):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
# BETA1 = 0
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
# U = 32.5e6
freqs
=
[
2
*
f
*
1e-6
-
offset
for
f
in
Freqs
[:
-
1
]]
#Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings
,
Fluorescence1
=
GenerateNoisyCPT_fit
(
SG
,
SR
,
SP
,
gPS
,
gPD
,
DetDoppler
,
DetRepump
,
U
,
DopplerLaserLinewidth
,
RepumpLaserLinewidth
,
ProbeLaserLinewidth
,
TEMP
,
alpha
,
phidoppler
,
titadoppler
,
phiprobe
,
[
titaprobe
],
phirepump
,
titarepump
,
freqs
,
plot
=
False
,
solvemode
=
1
,
detpvec
=
None
,
noiseamplitude
=
noiseamplitude
)
ScaledFluo1
=
np
.
array
([
f
*
SCALE1
+
OFFSET
for
f
in
Fluorescence1
])
if
plot
:
return
ScaledFluo1
,
Detunings
else
:
return
ScaledFluo1
#return ScaledFluo1
do_fit
=
True
if
do_fit
:
popt_2
,
pcov_2
=
curve_fit
(
FitEIT_MM_1ion
,
FreqsDR
,
CountsDR
,
p0
=
[
430
,
-
25
,
12
,
0.5
,
13
,
11
,
3e4
,
2e3
,
0.5e-3
,
32e6
],
bounds
=
((
0
,
-
100
,
-
20
,
0
,
0
,
0
,
0
,
0
,
0
,
20e6
),
(
1000
,
0
,
50
,
2
,
20
,
20
,
5e6
,
5e4
,
15e-3
,
40e6
)))
FittedEITpi_1_short
,
Detunings_1_short
=
FitEIT_MM_1ion
(
FreqsDR
,
*
popt_2
,
plot
=
True
)
freqslong
=
np
.
arange
(
min
(
FreqsDR
),
max
(
FreqsDR
)
+
FreqsDR
[
1
]
-
FreqsDR
[
0
],
0.1
*
(
FreqsDR
[
1
]
-
FreqsDR
[
0
]))
FittedEITpi_1_long
,
Detunings_1_long
=
FitEIT_MM_1ion
(
freqslong
,
*
popt_2
,
plot
=
True
)
DetDop
=
popt_2
[
1
]
DetRep
=
popt_2
[
2
]
Sdop
=
popt_2
[
3
]
Spr
=
popt_2
[
4
]
Srep
=
popt_2
[
5
]
#%%
plt
.
figure
()
plt
.
errorbar
(
Detunings_1_short
,
CountsDR
,
yerr
=
2
*
np
.
sqrt
(
CountsDR
),
fmt
=
'o'
,
color
=
'red'
,
alpha
=
0.5
,
capsize
=
2
,
markersize
=
2
)
plt
.
plot
(
Detunings_1_long
,
FittedEITpi_1_long
,
color
=
'darkolivegreen'
,
linewidth
=
3
,
label
=
'med 1'
)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt
.
xlabel
(
'Detuning (MHz)'
)
plt
.
ylabel
(
'Counts'
)
#plt.xlim(-20,0)
plt
.
legend
(
loc
=
'upper left'
,
fontsize
=
20
)
plt
.
grid
()
\ No newline at end of file
analisis/plots/20240312_RotationalDopplerShift_news/Data/CPT/000017121-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
3e350a31
File added
analisis/plots/20240312_RotationalDopplerShift_news/Data/CPT/000017123-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
3e350a31
File added
analisis/plots/20240312_RotationalDopplerShift_news/Data/CPT/000017170-IR_Scan_withcal_optimized.h5
0 → 100644
View file @
3e350a31
File added
analisis/plots/20240312_RotationalDopplerShift_news/RDS_piezobeamsizes_2024_invariance.py
View file @
3e350a31
...
...
@@ -12,7 +12,7 @@ from scipy import interpolate
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
#
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20240312_RotationalDopplerShift_news/Data')
os
.
chdir
(
'/home/nico/Documents/artiq_experiments/analisis/plots/20240312_RotationalDopplerShift_news/Data'
)
"""
...
...
@@ -559,8 +559,9 @@ from scipy.optimize import curve_fit
def
modelo3
(
r
,
a
,
b
,
c
):
#c=1
s
=
(
jv
(
0
,
b
/
r
)
)
**
2
return
a
*
(
s
/
(
1
+
c
*
s
))
s
=
a
*
(
jv
(
0
,
b
/
(
r
))
)
**
2
return
s
#return a*(s/(1+c*s))
rfit
=
np
.
arange
(
x1
,
len
(
Intensityver2
)
*
20
+
x2
,
20
)
yfit
=
[
pmdepthsdrver1
[
0
],
pmdepthsdrver1
[
1
],
pmdepthsdrver1
[
2
]]
+
[
p
for
p
in
pmdepthsdrver2
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment