Commit 517eb934 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto
parents 085c9da6 b25a253b
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
4 de ene 2024
@author: lolo
reingenieria del código que anda
Surge de fusionar
Data/EITfit/threeLevel_2repumps_AnalysisFunctions.py
Data/EITfit/threeLevel_2repumps_linealpol_python_scripts.py
MAPA de FUNCIONES
GenerateNoisyCPT_fit
|--> PerformExperiment_8levels_fixedRabi
|--> CPTspectrum8levels_fixedRabi --> ndarray,ndarray
|--> FullL_efficient --> ndarray
|--> dopplerBroadening --> float
|--> EffectiveL --> ndarray
|--> H0matrix --> ndarray
|--> HImatrix --> ndarray
|--> CalculateSingleMmatrix --> ndarray
|--> Lplusminus --> ndarray,ndarray,ndarray
|--> GetL1 --> ndarray
"""
# pylint: disable=C0301,R0913,R0914,W0621
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
# from EITfit.threeLevel_2repumps_linealpol_python_scripts import CPTspectrum8levels, CPTspectrum8levels_fixedRabi
import random
from scipy.signal import savgol_filter as sf
from numba import jit,njit
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@njit
def make_diag(vec):
"Construye matris diagonal desde una lista o vector"
return np.eye(len(vec))*np.array(vec).reshape(-1,1)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
"""
Scripts para el calculo de la curva CPT
"""
@njit
def H0matrix(Detg, Detp, u):
"""
Calcula la matriz H0 en donde dr es el detuning del doppler, dp es el retuning
del repump y u es el campo magnético en Hz/Gauss.
Para esto se toma la energía del nivel P como 0
"""
eigenEnergies = (Detg-u, Detg+u, -u/3, u/3, Detp-6*u/5,
Detp-2*u/5, Detp+2*u/5, Detp+6*u/5)
#pagina 26 de Oberst. los lande del calcio son iguales a Bario.
# H0 = np.diag(eigenEnergies)
# H0 = np.eye(len(eigenEnergies))*np.array(eigenEnergies).reshape(-1,1)
H0 = make_diag(eigenEnergies)
return H0
@njit
def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe):
"""
Calcula la matriz de interacción Hsp + Hpd, en donde rabR es la frecuencia de rabi de la transición Doppler SP,
rabP es la frecuencia de rabi de la transición repump DP, y las componentes ei_r y ei_p son las componentes de la polarización
del campo eléctrico incidente de doppler y repump respectivamente. Deben estar normalizadas a 1
"""
HI = np.zeros((8, 8), dtype=np.complex_)
i, j = 1, 3
HI[i-1, j-1] = (rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 1, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 3
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.sin(titadoppler)*np.exp(-1j*phidoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 2, 4
HI[i-1, j-1] = -(rabG/np.sqrt(3)) * np.cos(titadoppler)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 5
HI[i-1, j-1] = -(rabP/2) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 6
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 3, 7
HI[i-1, j-1] = rabP/np.sqrt(12) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 6
HI[i-1, j-1] = -(rabP/np.sqrt(12)) * np.sin(titaprobe)*np.exp(-1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 7
HI[i-1, j-1] = -(rabP/np.sqrt(3)) * np.cos(titaprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
i, j = 4, 8
HI[i-1, j-1] = (rabP/2) * np.sin(titaprobe)*np.exp(1j*phiprobe)
HI[j-1, i-1] = np.conjugate(HI[i-1, j-1])
return HI
@njit
def Lplusminus(detr, detp, phirepump, titarepump, forma=1):
Hintplus = np.zeros((8, 8), dtype=np.complex_)
Hintminus = np.zeros((8, 8), dtype=np.complex_)
Hintplus[4, 2] = (-1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[5, 2] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[6, 2] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintplus[5, 3] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintplus[6, 3] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintplus[7, 3] = (1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 4] = (-1/2)*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[2, 5] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[2, 6] = (1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(1j*phirepump)
Hintminus[3, 5] = (-1/(2*np.sqrt(3)))*np.sin(titarepump)*np.exp(-1j*phirepump)
Hintminus[3, 6] = (-1/np.sqrt(3))*np.cos(titarepump)
Hintminus[3, 7] = (1/2)*np.sin(titarepump)*np.exp(1j*phirepump)
# if forma==1:
if True:
Lplus = np.zeros((64, 64), dtype=np.complex_)
Lminus = np.zeros((64, 64), dtype=np.complex_)
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j==q:
if (k==2 or k==3) and r > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(Hintplus[r,k])
if (r==2 or r==3) and k > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(Hintminus[r,k])
elif r==k:
if (q==2 or q==3) and j > 3:
Lplus[r*8+q][k*8+j] = (-1j)*(- Hintplus[j,q])
if (j==2 or j==3) and q > 3:
Lminus[r*8+q][k*8+j] = (-1j)*(- Hintminus[j,q])
# if forma==2:
# deltaKro = np.diag([1, 1, 1, 1, 1, 1, 1, 1])
# Lplus = (-1j)*(np.kron(Hintplus, deltaKro) - np.kron(deltaKro, Hintplus))
# Lminus = (-1j)*(np.kron(Hintminus, deltaKro) - np.kron(deltaKro, Hintminus))
DeltaBar = np.zeros((64, 64), dtype=np.complex_)
for i in range(64):
DeltaBar[i, i] = (1j)*(detr - detp)
# return np.matrix(Lminus), np.matrix(Lplus), np.matrix(DeltaBar)
return Lminus, Lplus, DeltaBar
@njit
def GetL1(Lplus, Lminus, DeltaBar, L0, rabR, nmax):
"""
Devuelve Splus0 y Sminus0
"""
# Sp = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 - (nmax+1)*DeltaBar))*np.matrix(Lplus))
# Sm = (-1)*(0.5*rabR)*(np.matrix(np.linalg.inv(L0 + (nmax+1)*DeltaBar))*np.matrix(Lminus))
Sp = (-1)*(0.5*rabR)*(np.linalg.inv(L0 - (nmax+1)*DeltaBar)).dot(Lplus)
Sm = (-1)*(0.5*rabR)*(np.linalg.inv(L0 + (nmax+1)*DeltaBar)).dot(Lminus)
for n in list(range(nmax+1))[(nmax+1)::-1][0:len(list(range(nmax+1))[(nmax+1)::-1])-1]: #jaja esto solo es para que vaya de nmax a 1 bajando. debe haber algo mas facil pero kcio
# Sp = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 - n*DeltaBar + rabR*(Lminus*np.matrix(Sp))))*np.matrix(Lplus))
# Sm = (-1)*(rabR)*(np.matrix(np.linalg.inv(L0 + n*DeltaBar + rabR*(Lplus*np.matrix(Sm))))*np.matrix(Lminus))
Sp = (-1)*(rabR)*((np.linalg.inv(L0 - n*DeltaBar + rabR*(Lminus.dot(Sp)))).dot(Lplus))
Sm = (-1)*(rabR)*((np.linalg.inv(L0 + n*DeltaBar + rabR*(Lplus.dot(Sm)))).dot(Lminus))
L1 = 0.5*rabR*(Lminus.dot(Sp) + Lplus.dot(Sm))
return L1
@njit
def EffectiveL(gPS, gPD, lwg, lwr, lwp):
"""
Siendo Heff = H + EffectiveL, calcula dicho EffectiveL que es (-0.5j)*sumatoria(CmDaga*Cm) que luego sirve para calcular el Liouvilliano
"""
Leff = np.zeros((8, 8), dtype=np.complex_)
Leff[0, 0] = 2*lwg
Leff[1, 1] = 2*lwg
Leff[2, 2] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[3, 3] = ((2/3)+(1/3))*gPS + ((1/2) + (1/6) + (1/3))*gPD
Leff[4, 4] = 2*(lwr + lwp)
Leff[5, 5] = 2*(lwr + lwp)
Leff[6, 6] = 2*(lwr + lwp)
Leff[7, 7] = 2*(lwr + lwp)
return (-0.5j)*Leff
@njit
def CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp):
"""
Si tomamos el Liuvilliano como L = (-j)*(Heff*deltak - Heffdaga*deltak) + sum(Mm),
esta funcion calcula dichos Mm, que tienen dimensión 64x64 ya que esa es la dimensión del L. Estas componentes
salen de hacer la cuenta a mano conociendo los Cm y considerando que Mm[8*(r-1)+s, 8*(k-1)+j] = Cm[r,l] + Cmdaga[j,s] = Cm[r,l] + Cm[s,j]
ya que los componentes de Cm son reales.
Esta M es la suma de las 8 matrices M.
"""
M =np.zeros((64, 64), dtype=np.complex_)
M[0,27] = (2/3)*gPS
M[9,18] = (2/3)*gPS
M[0,18] = (1/3)*gPS
M[1,19] = -(1/3)*gPS
M[8,26] = -(1/3)*gPS
M[9,27] = (1/3)*gPS
M[36,18] = (1/2)*gPD
M[37,19] = (1/np.sqrt(12))*gPD
M[44,26] = (1/np.sqrt(12))*gPD
M[45,27] = (1/6)*gPD
M[54,18] = (1/6)*gPD
M[55,19] = (1/np.sqrt(12))*gPD
M[62,26] = (1/np.sqrt(12))*gPD
M[63,27] = (1/2)*gPD
M[45,18] = (1/3)*gPD
M[46,19] = (1/3)*gPD
M[53,26] = (1/3)*gPD
M[54,27] = (1/3)*gPD
M[0,0] = 2*lwg
M[1,1] = 2*lwg
M[8,8] = 2*lwg
M[9,9] = 2*lwg
factor1 = 1
factor2 = 1
factor3 = 1
factor4 = 1
#M[36, 45] = lwp
M[36,36] = 2*(lwr + factor1*lwp)
M[37,37] = 2*(lwr + factor1*lwp)
M[38,38] = 2*(lwr + factor1*lwp)
M[39,39] = 2*(lwr + factor1*lwp)
M[44,44] = 2*(lwr + factor2*lwp)
M[45,45] = 2*(lwr + factor2*lwp)
M[46,46] = 2*(lwr + factor2*lwp)
M[47,47] = 2*(lwr + factor2*lwp)
M[52,52] = 2*(lwr + factor3*lwp)
M[53,53] = 2*(lwr + factor3*lwp)
M[54,54] = 2*(lwr + factor3*lwp)
M[55,55] = 2*(lwr + factor3*lwp)
M[60,60] = 2*(lwr + factor4*lwp)
M[61,61] = 2*(lwr + factor4*lwp)
M[62,62] = 2*(lwr + factor4*lwp)
M[63,63] = 2*(lwr + factor4*lwp)
return M
@njit
def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
"""
Calcula el broadening extra semiclásico por temperatura considerando que el ion atrapado se mueve.
wlg es la longitud de onda doppler, wlp la longitud de onda repump, T la temperatura del ion en kelvin, y alpha (en rads) el ángulo
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
return gammaD
@njit
def FullL_efficient(rabG, rabR, rabP, gPS = 0, gPD = 0, Detg = 0, Detr = 0, Detp = 0, u = 0, lwg = 0, lwr=0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, phirepump=0, titarepump=0, T = 0, alpha = 0):
"""
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora.
"""
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
#lwr = np.sqrt(lwr**2 + dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)**2)
lwg = np.sqrt(lwg**2 + db**2)
lwr = np.sqrt(lwr**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwr, lwp)
Heff = H0matrix(Detg, Detp, u) + HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe) + CC
# Heffdaga = np.matrix(Heff).getH()
Heffdaga = Heff.transpose().conj()
Lfullpartial = np.zeros((64, 64), dtype=np.complex_)
for r in range(8):
for q in range(8):
for k in range(8):
for j in range(8):
if j!=q and r!=k:
pass
elif j==q and r!=k:
if (r < 2 and k > 3) or (k < 2 and r > 3) or (r > 3 and k > 3) or (r==0 and k==1) or (r==1 and k==0) or (r==2 and k==3) or (r==3 and k==2): #todo esto sale de analizar explicitamente la matriz y tratar de no calcular cosas de más que dan cero
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k])
elif j!=q and r==k:
if (j < 2 and q > 3) or (q < 2 and j > 3) or (j > 3 and q > 3) or (j==0 and q==1) or (j==1 and q==0) or (j==2 and q==3) or (j==3 and q==2):
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(-Heffdaga[j,q])
else:
if Heff[r,k] == Heffdaga[j,q]:
pass
else:
Lfullpartial[r*8+q][k*8+j] = (-1j)*(Heff[r,k]-Heffdaga[j,q])
M = CalculateSingleMmatrix(gPS, gPD, lwg, lwr, lwp)
L0 = Lfullpartial + M
nmax = 1
Lminus, Lplus, DeltaBar = Lplusminus(Detr, Detp, phirepump, titarepump)
factor1 = np.exp(1j*0.2*np.pi)
factor2 = np.exp(-1j*0.2*np.pi)
#print(factor)
L1 = GetL1(factor1*Lplus, factor2*Lminus, DeltaBar, L0, rabR, nmax)
Lfull = L0 + L1
#NORMALIZACION DE RHO
i = 0
while i < 64:
if i%9 == 0:
Lfull[0, i] = 1
else:
Lfull[0, i] = 0
i = i + 1
return Lfull
"""
Scripts para correr un experimento y hacer el análisis de los datos
"""
def CalculoTeoricoDarkResonances(u, titadoppler):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return NegativeDR, PositiveDR
def CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
#u = 2*np.pi*u*1e6
Fluovector = []
tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
# if solvemode == 1:
if True:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)],dtype=np.complex_))
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
# if solvemode == 2:
# Linv = np.linalg.inv(L)
# rhovectorized = [Linv[j][0] for j in range(len(Linv))]
# Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
# Fluovector.append(Fluo)
tfinal = time.time()
print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
if plot:
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.legend()
return DetProbeVectorMHz, Fluovector
@njit
def CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump,
freqMin=-100, freqMax=100, freqStep=1e-1, plot=False, solvemode=1):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
phirepump, titarepump = phirepump*(np.pi/180), titarepump*(np.pi/180)
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
Detg, Detr = 2*np.pi*Detg*1e6, 2*np.pi*Detr*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwr, lwp = lwg*1e6, lwr*1e6, lwp*1e6
rabG = sg*gPS
rabR = sr*gPD
rabP = sp*gPD
#u = 2*np.pi*u*1e6
Fluovector = []
# tinicial = time.time()
for Detp in DetProbeVector:
L = FullL_efficient(rabG, rabR, rabP, gPS, gPD, Detg, Detr, Detp, u, lwg, lwr, lwp, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, Temp, alpha)
# if solvemode == 1:
if True:
coh = 5
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)],dtype=np.complex_))
#Fluo = np.abs(rhovectorized[coh])
Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
Fluovector.append(Fluo)
# if solvemode == 2:
# Linv = np.linalg.inv(L)
# rhovectorized = [Linv[j][0] for j in range(len(Linv))]
# Fluo = np.real(rhovectorized[18] + np.real(rhovectorized[27])) #estos son los rho33 + rho44
# Fluovector.append(Fluo)
# tfinal = time.time()
# print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
DetProbeVectorMHz = np.arange(freqMin, freqMax, freqStep)
# if plot:
# plt.xlabel('Probe detuning (MHz)')
# plt.ylabel('Fluorescence (A.U.)')
# plt.plot(DetProbeVectorMHz, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
# plt.legend()
return DetProbeVectorMHz, Fluovector
#%%
if __name__ == "__main__":
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 25 #campo magnetico en gauss
u = c*B
sg, sr, sp = 0.5, 1.5, 4 #parámetros de saturación del doppler y repump
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6 #anchos de linea de las transiciones
rabG, rabR, rabP = sg*gPS, sr*gPD, sp*gPD #frecuencias de rabi
lwg, lwr, lwp = 0.3, 0.3, 0.3 #ancho de linea de los laseres
Detg = -25
Detr = 20 #detuning del doppler y repump
Temp = 0.0e-3 #temperatura en K
alpha = 0*(np.pi/180) #angulo entre los láseres
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe, titaprobe = 0, 90
plotCPT = False
freqMin = -50
freqMax = 50
freqStep = 5e-2
Frequencyvector, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, Detg, Detr, u, lwg, lwr, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=plotCPT, solvemode=1)
NegativeDR, PositiveDR = CalculoTeoricoDarkResonances(u/(2*np.pi*1e6), titadoppler)
plt.plot(Frequencyvector, [100*f for f in Fluovector], label=str(titaprobe) + 'º, T: ' + str(Temp*1e3) + ' mK')
plt.xlabel('Probe detuning (MHz)')
plt.ylabel('Fluorescence (A.U.)')
for PDR in PositiveDR:
plt.axvline(Detr+PDR, linestyle='--', linewidth=0.5, color='red')
for NDR in NegativeDR:
plt.axvline(Detg+NDR, linestyle='--', linewidth=0.5, color='blue')
#parametros que andan piola:
"""
ub = 9.27e-24
h = 6.63e-34
c = (ub/h)*1e-4 #en unidades de MHz/G
B = 17 #campo magnetico en gauss
u = c*B
#u = 80e6
sr, sp = 0.53, 4.2
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
rabR, rabP = sr*gPS, sp*gPD
lw = 2*np.pi * 0.33e6
lwr, lwp = lw, lw #ancho de linea de los laseres
dr_spec = - 2*np.pi* 26e6
freqSteps = 500
freqMin = -100e6
freqMax = 100e6
dps = 2*np.pi*np.linspace(freqMin, freqMax, freqSteps)
#dps = [-30e6]
alfar = 90*(np.pi/180)
ex_r, ey_r, ez_r = np.sin(alfar)*np.cos(0), np.sin(alfar)*np.sin(0), np.cos(alfar)
alfap = 90*(np.pi/180)
ex_p, ey_p, ez_p = np.sin(alfap)*np.cos(0), np.sin(alfap)*np.sin(0), np.cos(alfap)
"""
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump):
if titadoppler==0:
NegativeDR = [(-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u]
elif titadoppler==90:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
else:
NegativeDR = [(-11/5)*u, (-7/5)*u, (-3/5)*u, (-1/5)*u, (1/5)*u, (3/5)*u, (7/5)*u, (11/5)*u]
PositiveDR = [(-8/5)*u, (-4/5)*u, 0, (4/5)*u, (8/5)*u]
return [detuningdoppler + dr for dr in NegativeDR], [detuningrepump + dr for dr in PositiveDR]
def GetClosestIndex(Vector, value, tolerance=1e-3):
i = 0
while i<len(Vector):
if abs(Vector[i] - value) < tolerance:
return i
else:
i = i + 1
return GetClosestIndex(Vector, value, tolerance=2*tolerance)
def FindDRFrequencies(Freq, Fluo, TeoDR, entorno=3):
"""
Busca los indices y la frecuencia de los minimos en un entorno cercano al de la DR.
Si no encuentra, devuelve el valor teórico.
"""
IndiceDRteo1, IndiceEntornoinicialDRteo1, IndiceEntornofinalDRteo1 = GetClosestIndex(Freq, TeoDR[0]), GetClosestIndex(Freq, TeoDR[0]-entorno), GetClosestIndex(Freq, TeoDR[0]+entorno)
IndiceDRteo2, IndiceEntornoinicialDRteo2, IndiceEntornofinalDRteo2 = GetClosestIndex(Freq, TeoDR[1]), GetClosestIndex(Freq, TeoDR[1]-entorno), GetClosestIndex(Freq, TeoDR[1]+entorno)
IndiceDRteo3, IndiceEntornoinicialDRteo3, IndiceEntornofinalDRteo3 = GetClosestIndex(Freq, TeoDR[2]), GetClosestIndex(Freq, TeoDR[2]-entorno), GetClosestIndex(Freq, TeoDR[2]+entorno)
IndiceDRteo4, IndiceEntornoinicialDRteo4, IndiceEntornofinalDRteo4 = GetClosestIndex(Freq, TeoDR[3]), GetClosestIndex(Freq, TeoDR[3]-entorno), GetClosestIndex(Freq, TeoDR[3]+entorno)
IndiceDRteo5, IndiceEntornoinicialDRteo5, IndiceEntornofinalDRteo5 = GetClosestIndex(Freq, TeoDR[4]), GetClosestIndex(Freq, TeoDR[4]-entorno), GetClosestIndex(Freq, TeoDR[4]+entorno)
IndiceDRteo6, IndiceEntornoinicialDRteo6, IndiceEntornofinalDRteo6 = GetClosestIndex(Freq, TeoDR[5]), GetClosestIndex(Freq, TeoDR[5]-entorno), GetClosestIndex(Freq, TeoDR[5]+entorno)
EntornoFreqDR1, EntornoFreqDR2 = Freq[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Freq[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFreqDR3, EntornoFreqDR4 = Freq[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Freq[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFreqDR5, EntornoFreqDR6 = Freq[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Freq[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
EntornoFluoDR1, EntornoFluoDR2 = Fluo[IndiceEntornoinicialDRteo1:IndiceEntornofinalDRteo1], Fluo[IndiceEntornoinicialDRteo2:IndiceEntornofinalDRteo2]
EntornoFluoDR3, EntornoFluoDR4 = Fluo[IndiceEntornoinicialDRteo3:IndiceEntornofinalDRteo3], Fluo[IndiceEntornoinicialDRteo4:IndiceEntornofinalDRteo4]
EntornoFluoDR5, EntornoFluoDR6 = Fluo[IndiceEntornoinicialDRteo5:IndiceEntornofinalDRteo5], Fluo[IndiceEntornoinicialDRteo6:IndiceEntornofinalDRteo6]
IndiceFluoMinimaEntorno1, IndiceFluoMinimaEntorno2 = argrelextrema(np.array(EntornoFluoDR1), np.less)[0], argrelextrema(np.array(EntornoFluoDR2), np.less)[0]
IndiceFluoMinimaEntorno3, IndiceFluoMinimaEntorno4 = argrelextrema(np.array(EntornoFluoDR3), np.less)[0], argrelextrema(np.array(EntornoFluoDR4), np.less)[0]
IndiceFluoMinimaEntorno5, IndiceFluoMinimaEntorno6 = argrelextrema(np.array(EntornoFluoDR5), np.less)[0], argrelextrema(np.array(EntornoFluoDR6), np.less)[0]
try:
FreqDR1 = EntornoFreqDR1[int(IndiceFluoMinimaEntorno1)]
IndiceDR1 = GetClosestIndex(Freq, FreqDR1)
except:
FreqDR1 = TeoDR[0]
IndiceDR1 = IndiceDRteo1
try:
FreqDR2 = EntornoFreqDR2[int(IndiceFluoMinimaEntorno2)]
IndiceDR2 = GetClosestIndex(Freq, FreqDR2)
except:
FreqDR2 = TeoDR[1]
IndiceDR2 = IndiceDRteo2
try:
FreqDR3 = EntornoFreqDR3[int(IndiceFluoMinimaEntorno3)]
IndiceDR3 = GetClosestIndex(Freq, FreqDR3)
except:
FreqDR3 = TeoDR[2]
IndiceDR3 = IndiceDRteo3
try:
FreqDR4 = EntornoFreqDR4[int(IndiceFluoMinimaEntorno4)]
IndiceDR4 = GetClosestIndex(Freq, FreqDR4)
except:
FreqDR4 = TeoDR[3]
IndiceDR4 = IndiceDRteo4
try:
FreqDR5 = EntornoFreqDR5[int(IndiceFluoMinimaEntorno5)]
IndiceDR5 = GetClosestIndex(Freq, FreqDR5)
except:
FreqDR5 = TeoDR[4]
IndiceDR5 = IndiceDRteo5
try:
FreqDR6 = EntornoFreqDR6[int(IndiceFluoMinimaEntorno6)]
IndiceDR6 = GetClosestIndex(Freq, FreqDR6)
except:
FreqDR6 = TeoDR[5]
IndiceDR6 = IndiceDRteo6
return [IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6], [FreqDR1, FreqDR2, FreqDR3, FreqDR4, FreqDR5, FreqDR6]
def FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=-100, getindices=False):
"""
Toma los indices donde estan las DR y evalua su fluorescencia. Esos indices son minimos locales en un entorno
cercano a las DR teoricas y, si no hay ningun minimo, toma la teorica.
Luego, hace el cociente de esa fluorescencia y un factor de normalización segun NormalizationCriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
4: Deuelve el cociente entre la fluorescencia del minimo y el valor de fluorescencia a detuning 0 MHz
"""
IndiceDR1, IndiceDR2, IndiceDR3, IndiceDR4, IndiceDR5, IndiceDR6 = IndicesDR[0], IndicesDR[1], IndicesDR[2], IndicesDR[3], IndicesDR[4], IndicesDR[5]
FluorescenceOfMinimums = [Fluo[IndiceDR1], Fluo[IndiceDR2], Fluo[IndiceDR3], Fluo[IndiceDR4], Fluo[IndiceDR5], Fluo[IndiceDR6]]
FrequencyOfMinimums = [Freq[IndiceDR1], Freq[IndiceDR2], Freq[IndiceDR3], Freq[IndiceDR4], Freq[IndiceDR5], Freq[IndiceDR6]]
DistanciaFrecuenciaCociente = 25
if NormalizationCriterium==0:
print('che')
return FrequencyOfMinimums, FluorescenceOfMinimums
if NormalizationCriterium==1:
Fluorescenciacerodetuning = Fluo[GetClosestIndex(Freq, 0)]
Fluorescenciaasintotica = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
return FrequencyOfMinimums, np.array([Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica, Fluorescenciacerodetuning/Fluorescenciaasintotica])
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
indiceizquierda = k
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
indicederecha = l
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
#asintotico
FluoNormDivisor = Fluo[GetClosestIndex(Freq, frecuenciareferenciacriterioasintotico)]
if NormalizationCriterium==4:
#este te tira la fluorescencia de detuning 0
FluoNormDivisor = Fluo[GetClosestIndex(Freq, 0)]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
print('Esto: ', RelativeFluorescenceOfMinimums)
if NormalizationCriterium==2 and getindices==True:
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums, indiceizquierda, indicederecha
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetFinalMaps(MapasDR1, MapasDR2, MapasDR3, MapasDR4, MapasDR5, MapasDR6):
"""
Nota: esto vale para polarizacion del 397 sigma+ + sigma-. Sino hay que cambiar los coeficientes.
La estructura es:
MapasDRi = [MapaMedido_criterio1_DRi, MapaMedido_criterio2_DRi, MapaMedido_criterio3_DRi, MapaMedido_criterio4_DRi]
"""
Mapa1 = MapasDR1[0]
Mapa2pi = np.sqrt(3)*(MapasDR2[1] + MapasDR5[1])
Mapa2smas = np.sqrt(12/2)*MapasDR3[1] + (2/np.sqrt(2))*MapasDR6[1]
Mapa2smenos = (2/np.sqrt(2))*MapasDR1[1] + np.sqrt(12/2)*MapasDR4[1]
Mapa3pi = np.sqrt(3)*(MapasDR2[2] + MapasDR5[2])
Mapa3smas = np.sqrt(12/2)*MapasDR3[2] + (2/np.sqrt(2))*MapasDR6[2]
Mapa3smenos = (2/np.sqrt(2))*MapasDR1[2] + np.sqrt(12/2)*MapasDR4[2]
return Mapa1, [Mapa2pi, Mapa2smas, Mapa2smenos], [Mapa3pi, Mapa3smas, Mapa3smenos]
def CombinateDRwithCG(RelMinMedido1, RelMinMedido2, RelMinMedido3, RelMinMedido4):
Fluo1 = RelMinMedido1[0]
Fluo2pi = np.sqrt(3)*(RelMinMedido2[1] + RelMinMedido2[4])
Fluo2smas = np.sqrt(12/2)*RelMinMedido2[2] + (2/np.sqrt(2))*RelMinMedido2[5]
Fluo2smenos = (2/np.sqrt(2))*RelMinMedido2[0] + np.sqrt(12/2)*RelMinMedido2[3]
Fluo3pi = np.sqrt(3)*(RelMinMedido3[1] + RelMinMedido3[4])
Fluo3smas = np.sqrt(12/2)*RelMinMedido3[2] + (2/np.sqrt(2))*RelMinMedido3[5]
Fluo3smenos = (2/np.sqrt(2))*RelMinMedido3[0] + np.sqrt(12/2)*RelMinMedido3[3]
return Fluo1, [Fluo2pi, Fluo2smas, Fluo2smenos], [Fluo3pi, Fluo3smas, Fluo3smenos]
def IdentifyPolarizationCoincidences(theoricalmap, target, tolerance=1e-1):
"""
Busca en un mapa 2D la presencia de un valor target (medido) con tolerancia tolerance.
Si lo encuentra, pone un 1. Sino, un 0. Al plotear con pcolor se verá
en blanco la zona donde el valor medido se puede hallar.
"""
CoincidenceMatrix = np.zeros((len(theoricalmap), len(theoricalmap[0])))
i = 0
while i<len(theoricalmap):
j = 0
while j<len(theoricalmap[0]):
if abs(theoricalmap[i][j]-target) < tolerance:
CoincidenceMatrix[i][j] = 1
j=j+1
i=i+1
return CoincidenceMatrix
def RetrieveAbsoluteCoincidencesBetweenMaps(MapsVectors):
MatrixSum = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
AbsoluteCoincidencesMatrix = np.zeros((len(MapsVectors[0]), len(MapsVectors[0][0])))
MatrixMapsVectors = []
for i in range(len(MapsVectors)):
MatrixMapsVectors.append(np.matrix(MapsVectors[i]))
for i in range(len(MatrixMapsVectors)):
MatrixSum = MatrixSum + MatrixMapsVectors[i]
MaxNumberOfCoincidences = np.max(MatrixSum)
ListMatrixSum = [list(i) for i in list(np.array(MatrixSum))]
for i in range(len(ListMatrixSum)):
for j in range(len(ListMatrixSum[0])):
if ListMatrixSum[i][j] == MaxNumberOfCoincidences:
AbsoluteCoincidencesMatrix[i][j] = 1
return AbsoluteCoincidencesMatrix, MaxNumberOfCoincidences
def MeasureMeanValueOfEstimatedArea(AbsoluteCoincidencesMap, X, Y):
NonZeroIndices = np.nonzero(AbsoluteCoincidencesMap)
Xsum = 0
Xvec = []
Ysum = 0
Yvec = []
N = len(NonZeroIndices[0])
for i in range(N):
Xsum = Xsum + X[NonZeroIndices[1][i]]
Xvec.append(X[NonZeroIndices[1][i]])
Ysum = Ysum + Y[NonZeroIndices[0][i]]
Yvec.append(Y[NonZeroIndices[0][i]])
Xaverage = Xsum/N
Yaverage = Ysum/N
Xspread = np.std(Xvec)
Yspread = np.std(Yvec)
return Xaverage, Yaverage, N, Xspread, Yspread
def MeasureRelativeFluorescenceFromCPT(Freq, Fluo, u, titadoppler, detuningrepump, detuningdoppler, frefasint=-100, entorno=3):
ResonanciasTeoricas, ResonanciasPositivas = CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)
IndicesDR, FreqsDR = FindDRFrequencies(Freq, Fluo, ResonanciasTeoricas, entorno=entorno)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums0 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=0, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums1 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=1, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums2, indiceizquierda, indicederecha = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=2, frecuenciareferenciacriterioasintotico=frefasint, getindices=True)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums3 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=3, frecuenciareferenciacriterioasintotico=frefasint)
FrequencyOfMinimums, RelativeFluorescenceOfMinimums4 = FindRelativeFluorescencesOfDR(Freq, Fluo, IndicesDR, detuningdoppler, NormalizationCriterium=4, frecuenciareferenciacriterioasintotico=frefasint)
print('hola')
print(RelativeFluorescenceOfMinimums0)
return RelativeFluorescenceOfMinimums0, RelativeFluorescenceOfMinimums1, RelativeFluorescenceOfMinimums2, RelativeFluorescenceOfMinimums3, RelativeFluorescenceOfMinimums4, IndicesDR, [indiceizquierda, indicederecha]
def GenerateNoisyCPT(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def GenerateNoisyCPT_fit(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001):
Frequencyvector, Fluovector = PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, min(freqs), max(freqs) + freqs[1]-freqs[0], freqs[1]-freqs[0], plot=False, solvemode=1, detpvec=None)
NoisyFluovector = [fluo+noiseamplitude*(2*random.random()-1) for fluo in Fluovector]
return Frequencyvector, NoisyFluovector
def AddNoiseToCPT(Fluo, noisefactor):
return [f+noisefactor*(2*random.random()-1) for f in Fluo]
def SmoothNoisyCPT(Fluo, window=11, poly=3):
SmoothenFluo = sf(Fluo, window, poly)
return SmoothenFluo
def GetMinimaInfo(Freq, Fluo, u, titadoppler, detuningdoppler, detuningrepump, MinimumCriterium=2, NormalizationCriterium=1):
"""
FUNCION VIEJA
Esta funcion devuelve valores de frecuencias y fluorescencia relativa de los minimos.
Minimumcriterion:
1: Saca los minimos con funcion argelextrema
2: Directamente con las frecuencias teoricas busca las fluorescencias
Normalizationcriterium:
1: Devuelve la fluorescencia absoluta de los minimos
2: Devuelve el cociente entre la fluorescencia del minimo y un valor medio entre dos puntos lejanos, como si no
hubiera una resonancia oscura y hubiera una recta. Ese valor esta a DistanciaFrecuenciaCociente del detuning del azul (el punto medio entre las dos DR en este caso)
3: Devuelve el cociente entre la fluorescencia del minimo y el valor a -100 MHz (si se hizo de -100 a 100),
o el valor limite por izquierda de la curva
"""
FluorescenceOfMaximum = max(Fluo)
FrequencyOfMaximum = Freq[Fluo.index(FluorescenceOfMaximum)]
#criterio para encontrar los minimos
#criterio usando minimos de la fluorescencia calculados con la curva
if MinimumCriterium == 1:
LocationOfMinimums = argrelextrema(np.array(Fluo), np.less)[0]
FluorescenceOfMinimums = np.array([Fluo[i] for i in LocationOfMinimums])
FrequencyOfMinimums = np.array([Freq[j] for j in LocationOfMinimums])
#criterio con las DR teoricas
if MinimumCriterium == 2:
FrecuenciasDRTeoricas, FrecuenciasDRTeoricasPositivas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
FrequencyOfMinimums = []
FluorescenceOfMinimums =[]
print(FrecuenciasDRTeoricas)
k=0
ventanita = 0.001
while k < len(Freq):
if Freq[k] < FrecuenciasDRTeoricas[0] + ventanita and Freq[k] > FrecuenciasDRTeoricas[0] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[1] + ventanita and Freq[k] > FrecuenciasDRTeoricas[1] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[2] + ventanita and Freq[k] > FrecuenciasDRTeoricas[2] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[3] + ventanita and Freq[k] > FrecuenciasDRTeoricas[3] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[4] + ventanita and Freq[k] > FrecuenciasDRTeoricas[4] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
elif Freq[k] < FrecuenciasDRTeoricas[5] + ventanita and Freq[k] > FrecuenciasDRTeoricas[5] - ventanita:
FrequencyOfMinimums.append(Freq[k])
FluorescenceOfMinimums.append(Fluo[k])
k = k + 1
print(FrequencyOfMinimums)
if len(FrequencyOfMinimums) != len(FrecuenciasDRTeoricas):
print('NO ANDA BIEN ESTO PAPI, revisalo')
#esto es para establecer un criterio para la fluorescencia relativa
DistanciaFrecuenciaCociente = 15
if NormalizationCriterium==1:
FluoNormDivisor = 1
if NormalizationCriterium==2:
k = 0
while k < len(Freq):
if Freq[k] < detuningdoppler-DistanciaFrecuenciaCociente + 2 and Freq[k] > detuningdoppler-DistanciaFrecuenciaCociente - 2:
FluoIzquierda = Fluo[k]
print('Izq:', Freq[k])
break
else:
k = k + 1
l = 0
while l < len(Freq):
if Freq[l] < detuningdoppler+DistanciaFrecuenciaCociente + 2 and Freq[l] > detuningdoppler+DistanciaFrecuenciaCociente - 2:
FluoDerecha = Fluo[l]
print('Der: ', Freq[l])
break
else:
l = l + 1
FluoNormDivisor = 0.5*(FluoDerecha+FluoIzquierda)
print(FluoNormDivisor)
if NormalizationCriterium==3:
FluoNormDivisor = Fluo[0]
RelativeFluorescenceOfMinimums = np.array([Fluore/FluoNormDivisor for Fluore in FluorescenceOfMinimums])
return FrequencyOfMinimums, RelativeFluorescenceOfMinimums
def GetPlotsofFluovsAngle_8levels(FrequencyOfMinimumsVector, RelativeFluorescenceOfMinimumsVector, u, titadoppler, detuningdoppler, detuningrepump, ventana=0.25, taketheoricalDR=False):
#primero buscamos las frecuencias referencia que se parezcan a las 6:
i = 0
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[0]
FrecuenciasDRTeoricas = [darkresonance for darkresonance in CalculoTeoricoDarkResonances_8levels(u, titadoppler, detuningdoppler, detuningrepump)[0]]
while i < len(FrequencyOfMinimumsVector):
if len(FrequencyOfMinimumsVector[i])==len(FrecuenciasDRTeoricas):
FrecuenciasReferenciaBase = FrequencyOfMinimumsVector[i]
print('Cool! Taking the DR identified with any curve')
break
else:
i = i + 1
if i==len(FrequencyOfMinimumsVector):
print('No hay ningun plot con 5 resonancias oscuras. Tomo las teóricas')
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
if taketheoricalDR:
FrecuenciasReferenciaBase = FrecuenciasDRTeoricas
Ventana = abs(ventana*(FrecuenciasReferenciaBase[1] - FrecuenciasReferenciaBase[0])) #ventana separadora de resonancias
print('Ventana = ', Ventana)
DarkResonance1Frequency = []
DarkResonance1Fluorescence = []
DarkResonance2Frequency = []
DarkResonance2Fluorescence = []
DarkResonance3Frequency = []
DarkResonance3Fluorescence = []
DarkResonance4Frequency = []
DarkResonance4Fluorescence = []
DarkResonance5Frequency = []
DarkResonance5Fluorescence = []
DarkResonance6Frequency = []
DarkResonance6Fluorescence = []
i = 0
while i < len(FrequencyOfMinimumsVector):
j = 0
FrecuenciasReferencia = [i for i in FrecuenciasReferenciaBase]
while j < len(FrequencyOfMinimumsVector[i]):
if abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[0])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[0])-Ventana):
DarkResonance1Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance1Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[0] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[1])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[1])-Ventana):
DarkResonance2Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance2Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[1] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[2])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[2])-Ventana):
DarkResonance3Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance3Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[2] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[3])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[3])-Ventana):
DarkResonance4Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance4Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[3] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[4])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[4])-Ventana):
DarkResonance5Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance5Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[4] = 0
elif abs(FrequencyOfMinimumsVector[i][j]) < (abs(FrecuenciasReferencia[5])+Ventana) and abs(FrequencyOfMinimumsVector[i][j]) >= (abs(FrecuenciasReferencia[5])-Ventana):
DarkResonance6Frequency.append(FrequencyOfMinimumsVector[i][j])
DarkResonance6Fluorescence.append(RelativeFluorescenceOfMinimumsVector[i][j])
FrecuenciasReferencia[5] = 0
else:
#print('Algo anduvo mal, por ahi tenes que cambiar la ventana che')
pass
j = j + 1
if np.count_nonzero(FrecuenciasReferencia) > 0:
if FrecuenciasReferencia[0] != 0:
DarkResonance1Frequency.append(FrecuenciasReferencia[0])
DarkResonance1Fluorescence.append()
if FrecuenciasReferencia[1] != 0:
DarkResonance2Frequency.append(FrecuenciasReferencia[1])
DarkResonance2Fluorescence.append(0)
if FrecuenciasReferencia[2] != 0:
DarkResonance3Frequency.append(FrecuenciasReferencia[2])
DarkResonance3Fluorescence.append(0)
if FrecuenciasReferencia[3] != 0:
DarkResonance4Frequency.append(FrecuenciasReferencia[3])
DarkResonance4Fluorescence.append(0)
if FrecuenciasReferencia[4] != 0:
DarkResonance5Frequency.append(FrecuenciasReferencia[4])
DarkResonance5Fluorescence.append(0)
if FrecuenciasReferencia[5] != 0:
DarkResonance6Frequency.append(FrecuenciasReferencia[5])
DarkResonance6Fluorescence.append(0)
i = i + 1
return DarkResonance1Frequency, DarkResonance1Fluorescence, DarkResonance2Frequency, DarkResonance2Fluorescence, DarkResonance3Frequency, DarkResonance3Fluorescence, DarkResonance4Frequency, DarkResonance4Fluorescence, DarkResonance5Frequency, DarkResonance5Fluorescence, DarkResonance6Frequency, DarkResonance6Fluorescence, FrecuenciasReferenciaBase
def PerformExperiment_8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(rabG, rabR, rabP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
def PerformExperiment_8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobeVec, phirepump, titarepump, freqMin, freqMax, freqStep, plot=False, solvemode=1, detpvec=None):
"""
Hace un experimento barriendo ángulos de repump con el angulo de doppler fijo.
solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
"""
Fluovectors = []
for titaprobe in titaprobeVec:
tinicial = time.time()
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels_fixedRabi(sg, sr, sp, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, phirepump, titarepump, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1)
tfinal = time.time()
print('Done angle ', titarepump, ' Total time: ', round((tfinal-tinicial), 2), "s")
if plot:
plt.figure()
plt.xlabel('Repump detuning (MHz')
plt.ylabel('Fluorescence (A.U.)')
plt.plot(ProbeDetuningVectorL, Fluovector, label=str(titarepump)+'º tita repump, T: ' + str(T*1e3) + ' mK')
plt.legend()
Fluovectors.append(Fluovector)
if len(titaprobeVec) == 1: #esto es para que no devuelva un vector de vectores si solo fijamos un angulo
Fluovectors = Fluovector
return ProbeDetuningVectorL, Fluovectors
......@@ -7,6 +7,11 @@
reingenieria del código que anda
Surge de fusionar
Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
Data/EITfit/MM_eightLevel_2repumps_python_scripts.py
MAPA de FUNCIONES
CPTspectrum8levels_MM
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
Ploteo de datos y ajustes del barrido en voltaje del Endcap
equivalente a pasear el ion en algun entorno del punto de compensación ideal
y ver los efectos de micromoción (y tal vez temperatura)
@author: lolo
"""
......@@ -24,6 +29,7 @@ from time import time
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes del barrido en voltaje del Endcap
equivalente a pasear el ion en algun entorno del punto de compensación ideal
y ver los efectos de micromoción (y tal vez temperatura)
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from time import time
from numba import jit,njit
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Carga de datos y librerías auxiliares
## Librerias ##################################################################
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
# PARAMETROS = np.load('PARAMETROS.npz',allow_pickle=True)
# for var_name in PARAMETROS.keys():
# globals()[var_name] = PARAMETROS[var_name]
# print(f'loaded: {var_name}')
# Funciones auxiliares
from scipy.stats.distributions import t,chi2
def estadistica(datos_x,datos_y,modelo,pcov,parametros,nombres=None,alpha=0.05):
if nombres is None:
nombres = [ f'{j}' for j in range(len(parametros)) ]
# Cantidad de parámetros
P = len(parametros)
# Número de datos
N = len(datos_x)
# Grados de libertas (Degrees Of Freedom)
dof = N-P-1
# Cauculamos coordenadas del modelo
# modelo_x = datos_x if modelo_x_arr is None else modelo_x_arr
# modelo_y = modelo( modelo_x, *parametros )
# Predicción del modelo para los datos_x medidos
prediccion_modelo = modelo( datos_x, *parametros )
# Calculos de cantidades estadísticas relevantes
COV = pcov # Matriz de Covarianza
SE = np.sqrt(np.diag( COV )) # Standar Error / Error estandar de los parámetros
residuos = datos_y - prediccion_modelo # diferencia enrte el modelo y los datos
SSE = sum(( residuos )**2 ) # Resitual Sum of Squares
SST = sum(( datos_y - np.mean(datos_y))**2) # Total Sum of Squares
# http://en.wikipedia.org/wiki/Coefficient_of_determination
# Expresa el porcentaje de la varianza que logra explicar el modelos propuesto
Rsq = 1 - SSE/SST # Coeficiente de determinación
Rsq_adj = 1-(1-Rsq) * (N-1)/(N-P-1) # Coeficiente de determinación Ajustado
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#In_least_squares_regression_analysis
# Expresa la correlación que hay entre los datos y la predicción del modelo
r_pearson = np.corrcoef( datos_y , prediccion_modelo )[0,1]
# Reduced chi squared
# https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
chi2_ = sum( residuos**2 )/N
chi2_red = sum( residuos**2 )/(N-P)
# Chi squared test
chi2_test = sum( residuos**2 / abs(prediccion_modelo) )
# p-value del ajuste
p_val = chi2(dof).cdf( chi2_test )
sT = t.ppf(1.0 - alpha/2.0, N - P ) # student T multiplier
CI = sT * SE # Confidence Interval
print('R-squared ',Rsq)
print('R-sq_adjusted',Rsq_adj)
print('chi2 ',chi2_)
print('chi2_reduced ',chi2_red)
print('chi2_test ',chi2_test)
print('r-pearson ',r_pearson)
print('p-value ',p_val)
print('')
print('Error Estandard (SE):')
for i in range(P):
print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , SE[i])
print('')
print('Intervalo de confianza al '+str((1-alpha)*100)+'%:')
for i in range(P):
print(f'parametro[{nombres[i]:>5s}]: ' , parametros[i], ' ± ' , CI[i])
return dict(R2=Rsq,R2_adj=Rsq_adj,chi2=chi2_,chi2_red=chi2_red,
chi2_test=chi2_test,r=r_pearson,pvalue=p_val,
SE=SE,CI=CI)
## Datos ######################################################################
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('../20231123_CPTconmicromocion3/Data/')
folder = '../20231123_CPTconmicromocion3/Data/'
CPT_FILES = f"""
{folder}/000016262-IR_Scan_withcal_optimized
{folder}/000016239-IR_Scan_withcal_optimized
{folder}/000016240-IR_Scan_withcal_optimized
{folder}/000016241-IR_Scan_withcal_optimized
{folder}/000016244-IR_Scan_withcal_optimized
{folder}/000016255-IR_Scan_withcal_optimized
{folder}/000016256-IR_Scan_withcal_optimized
{folder}/000016257-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
## Cargo parámetros fiteados de antes #########################################
PARAMETROS = np.load('analisis_superajuste_PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
globals()[var_name] = PARAMETROS[var_name]
print(f'loaded: {var_name}')
if False:
# Esto es para correr en caso de necesidad de limpiar todos los vectores de parametros
print('Limpio los vectores de parámetros')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(f'del {var}')
del(globals()[var])
## Definiciones de Numba ######################################################
@jit
def FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
TEMP, alpha, phidoppler, titadoppler,
phiprobe, titaprobe, BETA1, drivefreq,
min(freqs), max(freqs)+(freqs[1]-freqs[0]),
freqs[1]-freqs[0], circularityprobe=CircPr,
plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1, Detunings
@jit
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
"Esta verison de la función devuelve sólo el eje y, para usar de modelo en un ajuste"
return FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP)[0]
param_names = 'offset DetDoppler SG SP SCALE1 OFFSET BETA1 TEMP'.split()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
La 0 no ajusta bien incluso con todos los parametros libres
De la 1 a la 11 ajustan bien
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9,10,11]
#SelectedCurveVec = [10]
CircPr = 1
alpha = 0
def hiperbola(x,a,y0,b,x0):
"""
Hiperbola de ecuación:
1 =(y-y0)²/a² - (x-x0)²/b²
"""
return a*np.sqrt(((x-x0)**2+b**2))+y0
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Graficamos todos los fiteos
# tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec)
# for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve in zip(*tmp_datos):
# plt.figure()
# plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
# plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
# #plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# plt.xlabel('Detuning (MHz)')
# plt.ylabel('Counts')
# plt.legend(loc='upper left', fontsize=20)
# plt.grid()
# print(f'listo med {selectedcurve}')
# print(popt_3_SA)
fig, axx = plt.subplots( 3,4, figsize=(13,8) , constrained_layout=True, sharex=True , sharey=True )
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec,axx.flatten())
for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve,ax in zip(*tmp_datos):
ax.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.3, capsize=2, markersize=2)
ax.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='black', linewidth=2, label=f'med {selectedcurve}', alpha=0.7)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# ax.set_xlabel('Detuning (MHz)')
# ax.set_ylabel('Counts')
ax.legend(loc='upper left', fontsize=12)
ax.grid(True, ls=":")
print(f'listo med {selectedcurve}')
# print(popt_3_SA)
for ax in axx[:,0]:
ax.set_ylabel('Counts')
for ax in axx[-1,:]:
ax.set_xlabel('Detuning (MHz)')
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Gráfico central
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 8})
# Para esto hace falta:
# sudo apt install dvipng
plt.rcParams['text.usetex']=True
# plt.rcParams['text.latex.unicode']=True
# params= {'text.latex.preamble' : [r'\usepackage{amsmath}']}
# plt.rcParams.update(params)
# fig, axx = plt.subplots( 3,4, figsize=(8.6/2.54*2,4) , constrained_layout=True, sharex=True , sharey=True )
# fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
## Layout ###########################
from matplotlib import gridspec
figsize=(8.6/2.54*2,4)
width_ratios=[1,2,1]
fig, axx = plt.subplots(ncols=3, nrows=3, sharex=True, sharey=False, constrained_layout=True,
figsize=figsize, gridspec_kw=dict(width_ratios=width_ratios))
fig.set_constrained_layout_pads(w_pad=1/72, h_pad=1/72, hspace=0, wspace=0)
fig.set_constrained_layout_pads(w_pad=0, h_pad=0, hspace=0, wspace=0)
gs = axx[0, 0].get_gridspec()
# remove the underlying axes
for ax in axx[:,1]:
ax.remove()
gs2 = gridspec.GridSpec(4,3, width_ratios=width_ratios,left=0.16,right=0.9,bottom=0.12)
ax_central = fig.add_subplot(gs2[:-1, 1])
ax_res = fig.add_subplot(gs2[-1, 1], sharex=ax_central,zorder=-5)
plt.setp(ax_central.get_xticklabels(), visible=False)
for ax in axx[:,2]:
ax.yaxis.tick_right()
ax.yaxis.set_label_position("right")
## CPTs ########################################
selection= (0,1,3,4,7,8)
axes_vec = (axx[0,0],axx[1,0],axx[2,0],axx[2,2],axx[1,2],axx[0,2])
tmp_datos=(Detuningsshort_vec[selection,:],
Counts_vec[selection,:],
Detuningslong_vec[selection,:],
FittedCounts_vec[selection,:],
np.array(selection)+1,
axes_vec,'abcfed')
for Detunings_3_SA_short,CountsDR,Detunings_3_SA_long,FittedEITpi_3_SA_long,selectedcurve,ax,le in zip(*tmp_datos):
ax.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR),
fmt='o', color='darkgreen', alpha=0.2, capsize=2,
markersize=2, label='measured data')
ax.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long,
color='black', linewidth=2, label=f'micromotion model', alpha=0.7)
ax.grid(True, ls=":", color='lightgray')
ax.set_yticklabels([ f"{int(y/1000)}k" for y in ax.get_yticks() ])
ax.set_title(f'({le})', x=0.1, y=0.78, color='gray')
# ax.legend()
# ax.legend(ax.get_legend_handles_labels()[0], f'{selectedcurve}')
print(f'listo med {selectedcurve}')
axx[2,0].set_xlabel('Detuning [MHz]')
axx[2,2].set_xlabel('Detuning [MHz]')
axx[1,0].set_ylabel('Counts')
axx[1,2].set_ylabel('Counts')
## Grafico central ###############################
I = slice(None,9)
par_inicial = (12,0.1,1,-0.13)
param,pcov = curve_fit(hiperbola,voltages_dcA[I],Betas_vec[I],p0=par_inicial)
x_hip = np.linspace(-0.23,0.005,200)
ax = ax_central
ax.errorbar(voltages_dcA[I],Betas_vec[I],yerr=ErrorBetas_vec[I],fmt='o',
capsize=4,markersize=3,color='C3', label=r'fitted $\beta$')
ax.plot(x_hip,hiperbola(xhip,*popthip),color='C0', label=r'hyperbola model')
ax.set_ylabel(r'Modulation factor $\beta$', labelpad=-5)
ax.set_ylim(-0.05,3)
ax.set_xlim(-0.22,0)
ax.set_title(f'(g)', x=0.95, y=0.006, color='gray')
ax = ax_res
ax.errorbar(voltages_dcA[I],Betas_vec[I]-hiperbola(voltages_dcA[I],*popthip),
yerr=ErrorBetas_vec[I],fmt='o',capsize=4,markersize=3,color='C3')
ax.axhline( 0 , color='C0')
ax.set_ylabel('Res.', labelpad=-5)
ax.set_xlabel('Endcap voltage [V]')
ax.set_title(f'(h)', x=0.95, y=0.72, color='gray')
ax_res.get_xticklabels()[-1].set_visible(False)
for ax in [ax_central,ax_res]:
ax.grid(True, ls=":", color='lightgray')
# print([t*1e3 for t in Temp_vec])
# Anotaciones ##########################3
for jj,ax in zip(selection,axes_vec):
Axes_x = 1 if axx.flatten().tolist().index(ax)%3==0 else 0
ax_central.annotate("",
xy=(ax_central.get_lines()[0].get_xdata()[jj], ax_central.get_lines()[0].get_ydata()[jj]),
xycoords=ax_central.transData,
xytext=(Axes_x, 0.5), textcoords=ax.transAxes,
arrowprops=dict(arrowstyle="<-",connectionstyle="arc3,rad=-0.2", color='gray', alpha=0.5),
zorder=-2)
# Leyenda ##############################
h1, l1 = ax_central.get_legend_handles_labels()
h2, l2 = axx[0,0].get_legend_handles_labels()
ax_central.legend(h1+h2, l1+l2, loc='upper left')
fig.align_ylabels([ax_central,ax_res])
fig.tight_layout()
fig.savefig('grafico_central_opcion_A.png', dpi=300)
fig.savefig('grafico_central_opcion_A.pdf')
# import matplotlib.pyplot as plt
# from matplotlib import gridspec
# fig = plt.figure()
# gs = gridspec.GridSpec(1,2)
# ax1 = fig.add_subplot(gs[0])
# ax2 = fig.add_subplot(gs[1], sharey=ax1)
# plt.setp(ax2.get_yticklabels(), visible=False)
# plt.setp([ax1, ax2], title='Test')
# fig.suptitle('An overall title', size=20)
# gs.tight_layout(fig, rect=[0, 0, 1, 0.97])
# plt.show()
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Endcap hiperbola (con residuos)
"""
Veamos cómo varía el Beta con el voltaje del endcap
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
I = slice(None,9)
voltages_dcA = Voltages[0][SelectedCurveVec]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,y0,b,x0):
"""
Hiperbola de ecuación:
1 =(y-y0)²/a² - (x-x0)²/b²
"""
return a*np.sqrt(((x-x0)**2+b**2))+y0
es_hiperbola = False
# par_inicial = (100,0.1,1,-0.15)
# a y0 b x0
par_inicial = (12,0.1,1,-0.13)
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA[I],Betas_vec[I],p0=par_inicial)
xhip = np.linspace(-0.23,0.005,200)
# plt.figure()
# plt.errorbar(voltages_dcA[I],Betas_vec[I],yerr=ErrorBetas_vec[I],fmt='o',capsize=5,markersize=5,color=paleta[1])
# plt.plot(xhip,hiperbola(xhip,*popthip))
# # plt.plot(xhip,hiperbola(xhip,*par_inicial),'--',color='red')
# plt.xlabel('Endcap voltage (V)')
# plt.ylabel('Modulation factor')
# plt.grid()
fig, axx = plt.subplots( 2, figsize=(10,7) ,
constrained_layout=True, sharex=True,
gridspec_kw=dict(height_ratios=[10,2]))
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
ax = axx[0]
ax.errorbar(voltages_dcA[I],Betas_vec[I],yerr=ErrorBetas_vec[I],fmt='o',capsize=5,markersize=5,color=paleta[1])
ax.plot(xhip,hiperbola(xhip,*popthip))
# plt.plot(xhip,hiperbola(xhip,*par_inicial),'--',color='red')
ax.set_ylabel('Modulation factor')
ax = axx[1]
ax.errorbar(voltages_dcA[I],Betas_vec[I]-hiperbola(voltages_dcA[I],*popthip),
yerr=ErrorBetas_vec[I],fmt='o',capsize=5,markersize=5,color=paleta[1])
ax.set_ylabel('Res.')
ax.set_xlabel('Endcap voltage (V)')
for ax in axx:
ax.grid(True, ls=":", color='lightgray')
print([t*1e3 for t in Temp_vec])
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Este hay que armarlo aún
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
# plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
print(f'\n\nTE FALTA DEFINIR LA VARIABLE minimum_voltage\n\n')
plt.axhline(0.538)
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Ajuste de los betas y la temperatura
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
ftrap=22.1
gamma=21
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
"""
Temperatura vs beta con un ajuste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:10], [t*1e3 for t in Temp_vec[:10]],p0=(-10, -10, 1)) #esto ajusta muy bien
print(popt_rho22_raw)
betaslong = np.arange(0,2*2.7,0.01)
print(f'Min temp predicted: {InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw)[100]}')
plt.figure()
plt.errorbar(Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],xerr=ErrorBetas_vec[:10], yerr=[t*1e3 for t in ErrorTemp_vec[:10]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
#plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.plot(betaslong,InverseMicromotionSpectra(betaslong,*popt_rho22),label='Ajuste cuadratico')
plt.plot(betaslong,InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw),label='Ajuste cuadratico')
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
if False:
GUARDAR = {}
# for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('analisis_superajuste_PARAMETROS.npz', **GUARDAR )
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Acá hay un análisis de la estabilidad del campo magnético (presuntamente).
Se midieron N veces el mismo espectro y se analiza la variación del spliting
de picos CPT que se debe al efecto Zeeman.
El gráfico final muestra el corrimiento en procentual
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
Mediciones de una resonancia oscura DD multiples veces a lo largo de una noche para ver estabilidad de B
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231212_Bstability/Data/')
# CPT_FILES = """000016432-IR_Scan_withcal_optimized
# 000016433-IR_Scan_withcal_optimized
# 000016434-IR_Scan_withcal_optimized
# 000016435-IR_Scan_withcal_optimized
# 000016436-IR_Scan_withcal_optimized
# 000016437-IR_Scan_withcal_optimized
# 000016438-IR_Scan_withcal_optimized
# 000016439-IR_Scan_withcal_optimized
# 000016440-IR_Scan_withcal_optimized
# 000016441-IR_Scan_withcal_optimized
# 000016442-IR_Scan_withcal_optimized
# 000016443-IR_Scan_withcal_optimized
# """
folder = '../20231212_Bstability/Data/'
CPT_FILES = f"""
{folder}/000016434-IR_Scan_withcal_optimized
{folder}/000016435-IR_Scan_withcal_optimized
{folder}/000016436-IR_Scan_withcal_optimized
{folder}/000016437-IR_Scan_withcal_optimized
{folder}/000016438-IR_Scan_withcal_optimized
{folder}/000016439-IR_Scan_withcal_optimized
{folder}/000016440-IR_Scan_withcal_optimized
{folder}/000016441-IR_Scan_withcal_optimized
{folder}/000016442-IR_Scan_withcal_optimized
{folder}/000016443-IR_Scan_withcal_optimized
""".strip()
CALIB_FILES = f"""{folder}/000016430-IR_Scan_withcal_optimized"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
CalibCounts = []
CalibFreqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
for i, fname in enumerate(CALIB_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
CalibFreqs.append(np.array(data['datasets']['IR1_Frequencies']))
CalibCounts.append(np.array(data['datasets']['counts_spectrum']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
k=0
for k in range(len(Counts)):
CountsSplit.append(Split(Counts[k],len(Freqs[k])))
#%%
from scipy.optimize import curve_fit
def lorentzian(x,A,B,x0,g,C):
return 2*(A/np.pi)*g/(g**2 + 4*(x-x0)**2)+B+C*(x-x0)
Freqscal = [2*f*1e-6 for f in CalibFreqs[0]]
Countscal = CalibCounts[0]
popt_dr1, pcov_dr1 = curve_fit(lorentzian,Freqscal[37:47],Countscal[37:47],p0=(-1000,1000,436,1,1))
popt_dr2, pcov_dr2 = curve_fit(lorentzian,Freqscal[90:120],Countscal[90:120],p0=(-1000,1000,443,1,1))
DeltaFreqs = popt_dr2[2]-popt_dr1[2]
ZeroFrequency = 0.5*(popt_dr2[2]+popt_dr1[2])
plt.figure()
plt.plot(Freqscal,Countscal,'o')
plt.plot(Freqscal,lorentzian(Freqscal,*popt_dr1))
plt.plot(Freqscal,lorentzian(Freqscal,*popt_dr2))
plt.axvline(ZeroFrequency)
print(DeltaFreqs)
"""
Estas cuentas estan en el cuaderno SMILE MORE WORRY LESS pag 25.
La resonancia de la izquierda esta a (-4/5)*u. La de la derecha esta a (4/5)*u.
Por ende la diferencia es (8/5)*u.
Definimos u como 1.4 MHz/G * B. Entonces Despejamos B facilmente.
"""
ub = 9.27e-24
h = 6.63e-34
u = 1e-6*(ub/h)*1e-4 #en unidades de MHz/G
MagneticField = DeltaFreqs/((8/5)*u)
print(f'Magnetic field: {MagneticField}')
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
freqs = [2*f*1e-6 for f in Freqs[0]]
def lorentzian(x,A,B,x0,g,C):
return 2*(A/np.pi)*g/(g**2 + 4*(x-x0)**2)+B+C*(x-x0)
# ii_plot = 11
# jj_plot = 0
ii_plot = 9
jj_plot = 0
ii_problematic = []
jj_problematic = []
Centers = []
Widths = []
test = []
for ii in range(len(CountsSplit)):
for jj in range(len(CountsSplit[0])):
# print(ii)
# print(jj)
try:
if ii==2 and jj==11:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[:-10], CountsSplit[ii][jj][:-10],p0=(-1000,1000,436,1,1))
elif ii==2 and jj==12:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[40:], CountsSplit[ii][jj][40:],p0=(-1000,1000,436,1,1))
elif ii==4 and jj==1:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[:-86], CountsSplit[ii][jj][:-86],p0=(-1000,1000,436,1,1))
elif ii==4 and jj==2:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==7:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==12:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==13:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==14:
popt_lorentz = [0,0,0,0,0]
elif ii==11 and jj==2:
popt_lorentz = [0,0,0,0,0]
elif ii==11 and jj==3:
popt_lorentz = [0,0,0,0,0]
else:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs, CountsSplit[ii][jj],p0=(-1000,1000,436,1,1))
if popt_lorentz[2]>435.95 or popt_lorentz[2]<435.8:
if popt_lorentz[2]==0:
pass
else:
ii_problematic.append(ii)
jj_problematic.append(jj)
except:
popt_lorentz=[0,0,0,0]
print("except")
print(ii,jj)
if ii == ii_plot and jj == jj_plot:
print('MATCH')
test.append(popt_lorentz)
Centers.append(popt_lorentz[2])
Widths.append(popt_lorentz[3])
prob = 4
print(ii_problematic[prob])
print(jj_problematic[prob])
kk=-83
plt.figure()
plt.plot(freqs, CountsSplit[ii_problematic[prob]][jj_problematic[prob]])
plt.plot(freqs[kk], CountsSplit[ii_problematic[prob]][jj_problematic[prob]][kk],'o',markersize=10)
plt.plot(freqs,lorentzian(freqs,*test[0]))
#%%
"""
Usando que la DR de la izquierda esta a (-4/5)u, donde u = 1.4 MHz/G * B,
despejo y convierto la posicion de esa resonancia a campo magnetico
"""
def ConvertFreqsToMagneticField(f,zerofreq,u):
return np.abs(f-zerofreq)*(5/4)/(1.4)
lentotal = len(CountsSplit)*len(CountsSplit[0])
medtime=4/60
timevec = np.linspace(0,medtime*lentotal, lentotal)
plt.figure()
plt.plot(timevec[4:],ConvertFreqsToMagneticField(Centers,ZeroFrequency,u)[4:],'o')
plt.ylim(3.670,3.730)
plt.xlabel('Time (h)')
plt.ylabel('Magnetic field (G)')
plt.figure()
plt.plot(timevec[4:],[100*c/3.718 for c in ConvertFreqsToMagneticField(Centers,ZeroFrequency,u)][4:],'o')
plt.ylim(98.5,100.1)
plt.xlabel('Time (h)')
plt.ylabel('Magnetic field variation (percent)')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
NO entiendo bien que es esto
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231214_CPTconmicromocioncristals/Data/')
folder = '../20231214_CPTconmicromocioncristals/Data/Single/'
SINGLECPT_FILES = f"""
{folder}/000016453-IR_Scan_withcal_optimized
{folder}/000016454-IR_Scan_withcal_optimized
{folder}/000016455-IR_Scan_withcal_optimized
{folder}/000016456-IR_Scan_withcal_optimized
{folder}/000016457-IR_Scan_withcal_optimized
{folder}/000016458-IR_Scan_withcal_optimized
{folder}/000016459-IR_Scan_withcal_optimized
{folder}/000016461-IR_Scan_withcal_optimized
""".strip()
folder = '../20231214_CPTconmicromocioncristals/Data/Multi'
MULTICPT_FILES = f"""
{folder}/000016460-IR_Scan_withcal_optimized
{folder}/000016462-IR_Scan_withcal_optimized
{folder}/000016463-IR_Scan_withcal_optimized
{folder}/000016464-IR_Scan_withcal_optimized
""".strip()
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#print(SeeKeys(MULTICPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
SingleCounts = []
SingleFreqs = []
MultiCounts = []
MultiFreqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(MULTICPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
MultiFreqs.append(np.array(data['datasets']['IR1_Frequencies']))
MultiCounts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
for i, fname in enumerate(SINGLECPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
SingleFreqs.append(np.array(data['datasets']['IR1_Frequencies']))
SingleCounts.append(np.array(data['datasets']['data_array']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
for kk in range(len(MultiCounts)):
CountsSplit.append(Split(MultiCounts[kk],len(MultiFreqs[kk])))
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
jvec = [0] # de la 1 a la 9 vale la pena, despues no
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in SingleFreqs[j]], SingleCounts[j], yerr=np.sqrt(SingleCounts[j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
"""
Ploteo curvas de la multi1
meds:
0: dcA, 11 voltajes
1: dcA, 21 voltajes
2: compOven, 21 voltajes
3: dcA, 31 voltajes
"""
med=0
# jvec = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
jvec = [ ii for ii in range(len(CountsSplit[med])) ]
kk=9
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in MultiFreqs[med]], CountsSplit[med][j], yerr=np.sqrt(CountsSplit[med][j]), fmt='o', capsize=2, markersize=2)
#plt.plot([2*f*1e-6 for f in MultiFreqs[med]][kk], CountsSplit[med][j][kk],'o',markersize=10)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
print(CountsSplit[med][j][9])
print(CountsSplit[med][j][10])
print(CountsSplit[med][j][11])
print(CountsSplit[med][j][12])
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
cwd = os.getcwd()
os.chdir('../20231123_CPTconmicromocion3')
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
os.chdir(cwd)
# from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
"""
MEDICION 1: ajusto una curva con dos iones con un modelo que considera solo uno
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve=0
FreqsDR = SingleFreqs[selectedcurve]
CountsDR = SingleCounts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_1ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_1ion, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e6, 5e4, 10, (np.pi**2)*10e-3)))
FittedEITpi_1_short, Detunings_1_short = FitEIT_MM_1ion(FreqsDR, *popt_1, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_1_long, Detunings_1_long = FitEIT_MM_1ion(freqslong, *popt_1, plot=True)
plt.figure()
plt.errorbar(Detunings_1_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_1_long, FittedEITpi_1_long, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION 1: ahora la ajusto pero considerando contribucion de dos iones
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
selectedcurve=0
FreqsDR = SingleFreqs[selectedcurve]
CountsDR = SingleCounts[selectedcurve]
#freqslong = np.arange(min(FreqsDR)*0.2, max(FreqsDR)*2+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_2ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET1, OFFSET2, BETA1, BETA2, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET1 for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET2 for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1_2ion, pcov_1_2ion = curve_fit(FitEIT_MM_2ion, FreqsDR, CountsDR, p0=[445, -32, 0.5, 7, 2e4, 1e4, 2e3, 1.5e3, 2, 1, 0.5e-3], bounds=((0, -50, 0, 0, 0, 0, 0,0, 0,0, 0), (1000, 0, 2, 20, 5e6, 5e6, 5e4,5e4, 10, 10,20e-3)))
FittedEITpi_1_short_2ion, Detunings_1_short_2ion = FitEIT_MM_2ion(FreqsDR, *popt_1_2ion, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_1_long_2ion, Detunings_1_long_2ion = FitEIT_MM_2ion(freqslong, *popt_1_2ion, plot=True)
plt.figure()
plt.errorbar(Detunings_1_short_2ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_1_long_2ion, FittedEITpi_1_long_2ion, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.xlim(-80,50)
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION MULTI INDIVIDUAL
VEO EL AJUSTE DE UNA DEL AS CURVAS MULTI PARA VER COMO AJUSTA
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 2
#selectedcurve=10
selectedcurvevec=[10]
#popt_vecs = []
#pcov_vecs = []
for selectedcurve in selectedcurvevec:
FreqsDR = MultiFreqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
if selectedcurve==9 and measurement==1:
CountsDR[10]=4132+89
CountsDR[11]=4132+2*89
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_2ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + 0.5*OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + 0.5*OFFSET for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
def FitEIT_MM_1ion(Freqs, offset1, offset2, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset1 for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
#Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + 1*OFFSET for f in Fluorescence1])
#ScaledFluo2 = np.array([f*SCALE2 + 0.5*OFFSET for f in Fluorescence2])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
do_fit = True
if do_fit:
try:
#popt_multi1_1ion_test, pcov_multi1_1ion_test = curve_fit(FitEIT_MM_1ion, FreqsDR, CountsDR, p0=[448.2, -44.8, 0.5, 6.6, 3.8e4, 1.5e-1, 4.2, 1.4e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e6, 5e4, 10, 20e-3)))
popt_multi1_2ion_test, pcov_multi1_2ion_test = curve_fit(FitEIT_MM_2ion, FreqsDR, CountsDR, p0=[448.2, -44.8, 0.5, 6.6, 3.8e4, 1.26e5, 1000, 4.2, 1.3, 1.4e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 800, 0,0, 0, 28e6), (1000, 0, 2, 20, 5e6, 5e6, 2000, 10, 10,20e-3,40e6)))
except:
popt_multi1_2ion_test = [0,0,0,0,0,0,0,0,0,0]
pcov_multi1_2ion_test = [0]
# FittedEITpi_multi1_short_1ion, Detunings_multi1_short_1ion = FitEIT_MM_1ion(FreqsDR, *popt_multi1_1ion_test, plot=True)
# freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
# FittedEITpi_multi1_long_1ion, Detunings_multi1_long_1ion = FitEIT_MM_1ion(freqslong, *popt_multi1_1ion_test, plot=True)
FittedEITpi_multi1_short_2ion, Detunings_multi1_short_2ion = FitEIT_MM_2ion(FreqsDR, *popt_multi1_2ion_test, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_multi1_long_2ion, Detunings_multi1_long_2ion = FitEIT_MM_2ion(freqslong, *popt_multi1_2ion_test, plot=True)
#popt_vecs.append(popt_multi1_2ion)
#pcov_vecs.append(pcov_multi1_2ion)
print(f'Listo {selectedcurve}')
# plt.figure()
# plt.errorbar(Detunings_multi1_short_1ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
# plt.plot(Detunings_multi1_long_1ion, FittedEITpi_multi1_long_1ion, color='red', linewidth=3, label=f'selcurve: {selectedcurve}')
# plt.title('1 ion model')
# plt.xlabel('Detuning (MHz)')
# plt.ylabel('Counts')
# plt.legend(loc='upper left', fontsize=20)
# plt.grid()
plt.figure()
plt.errorbar(Detunings_multi1_short_2ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_multi1_long_2ion, FittedEITpi_multi1_long_2ion, color='darkolivegreen', linewidth=3, label=f'selcurve: {selectedcurve}')
plt.title('2 ion model')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
# plt.plot(detunings,'o')
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION MULTI 1
Cada bloque ajusta un grupo de mediciones porque sino es un lio
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 1
#selectedcurve=10
selectedcurvevec=[7,8,9,10,11,12,13,14]
popt_vecs = []
pcov_vecs = []
for selectedcurve in selectedcurvevec:
FreqsDR = MultiFreqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_2ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + 0.5*OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + 0.5*OFFSET for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
try:
popt_multi1_2ion, pcov_multi1_2ion = curve_fit(FitEIT_MM_2ion, FreqsDR, CountsDR, p0=[448.2, -44.8, 0.5, 6.6, 3.8e4, 1.26e5, 1.5e-1, 4.2, 1.3, 1.4e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0,0, 0,25e6), (1000, 0, 2, 20, 5e6, 5e6, 5e4, 10, 10,20e-3,40e6)))
except:
popt_multi1_2ion = [0,0,0,0,0,0,0,0,0,0,0]
pcov_multi1_2ion = [0]
FittedEITpi_multi1_short_2ion, Detunings_multi1_short_2ion = FitEIT_MM_2ion(FreqsDR, *popt_multi1_2ion, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_multi1_long_2ion, Detunings_multi1_long_2ion = FitEIT_MM_2ion(freqslong, *popt_multi1_2ion, plot=True)
popt_vecs.append(popt_multi1_2ion)
pcov_vecs.append(pcov_multi1_2ion)
print(f'Listo {selectedcurve}')
plt.figure()
plt.errorbar(Detunings_multi1_short_2ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_multi1_long_2ion, FittedEITpi_multi1_long_2ion, color='darkolivegreen', linewidth=3, label=f'selcurve: {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
# plt.plot(detunings,'o')
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION MULTI 1
otras
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 1
#selectedcurve=10
selectedcurvevec=[15,16,17,18]
popt_vecs2 = []
pcov_vecs2 = []
for selectedcurve in selectedcurvevec:
FreqsDR = MultiFreqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_2ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + 0.5*OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + 0.5*OFFSET for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
try:
popt_multi1_2ion, pcov_multi1_2ion = curve_fit(FitEIT_MM_2ion, FreqsDR, CountsDR, p0=[447.5, -44.0, 0.7, 10, 5.0e4, 6e4, 1.5e-10, 3.7, 1.3, 1.1e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0,0, 0, 25e6), (1000, 0, 2, 20, 5e6, 5e6, 5e4, 10, 10,20e-3, 40e6)))
except:
popt_multi1_2ion = [0,0,0,0,0,0,0,0,0,0,0]
pcov_multi1_2ion = [0]
FittedEITpi_multi1_short_2ion, Detunings_multi1_short_2ion = FitEIT_MM_2ion(FreqsDR, *popt_multi1_2ion, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_multi1_long_2ion, Detunings_multi1_long_2ion = FitEIT_MM_2ion(freqslong, *popt_multi1_2ion, plot=True)
popt_vecs2.append(popt_multi1_2ion)
pcov_vecs2.append(pcov_multi1_2ion)
print(f'Listo {selectedcurve}')
plt.figure()
plt.errorbar(Detunings_multi1_short_2ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_multi1_long_2ion, FittedEITpi_multi1_long_2ion, color='darkolivegreen', linewidth=3, label=f'selcurve: {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
MEDICION MULTI 1
otras
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 1
#selectedcurve=10
selectedcurvevec=[6]
popt_vecs3 = []
pcov_vecs3 = []
for selectedcurve in selectedcurvevec:
FreqsDR = MultiFreqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_2ion(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + 0.5*OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + 0.5*OFFSET for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
try:
popt_multi1_2ion, pcov_multi1_2ion = curve_fit(FitEIT_MM_2ion, FreqsDR, CountsDR, p0=[448.2, -45.8, 0.6, 10, 7.3e4, 2.9e4, 1.3e3, 3.7, 1.1, 3.4e-3,32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0,0, 0,25e6), (1000, 0, 2, 20, 5e6, 5e6, 5e4, 10, 10,20e-3,40e6)))
except:
popt_multi1_2ion = [0,0,0,0,0,0,0,0,0,0,0]
pcov_multi1_2ion = [0]
FittedEITpi_multi1_short_2ion, Detunings_multi1_short_2ion = FitEIT_MM_2ion(FreqsDR, *popt_multi1_2ion, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_multi1_long_2ion, Detunings_multi1_long_2ion = FitEIT_MM_2ion(freqslong, *popt_multi1_2ion, plot=True)
popt_vecs3.append(popt_multi1_2ion)
pcov_vecs3.append(pcov_multi1_2ion)
print(f'Listo {selectedcurve}')
plt.figure()
plt.errorbar(Detunings_multi1_short_2ion, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_multi1_long_2ion, FittedEITpi_multi1_long_2ion, color='darkolivegreen', linewidth=3, label=f'selcurve: {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
betas1s = []
betas2s = []
temps = []
detunings = []
# for i in range(len(popt_vecs3)):
# betas1s.append(popt_vecs3[i][7])
# betas2s.append(popt_vecs3[i][8])
# temps.append(popt_vecs3[i][9])
# detunings.append(popt_vecs3[i][6])
for i in range(len(popt_vecs)):
betas1s.append(popt_vecs[i][7])
betas2s.append(popt_vecs[i][8])
temps.append(popt_vecs[i][9])
detunings.append(popt_vecs[i][])
for i in range(len(popt_vecs2)):
betas1s.append(popt_vecs2[i][7])
betas2s.append(popt_vecs2[i][8])
temps.append(popt_vecs2[i][9])
detunings.append(popt_vecs2[i][5])
# plt.figure()
# plt.plot(betas1s,'o')
# plt.plot(betas2s,'o')
plt.figure()
plt.plot(detunings,'o')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
??
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
CPT con tres laseres pero lso dos IR son el mismo entonces las DD son mas finas
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211223_CPT_DosLaseres_v07_ChristmasSpecial\Data
folder = '../20231218_CPT_DosLaseres_Reflotoajustes/Data'
ALL_FILES = f"""
{folder}/000016420-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
#UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
#No_measures.append(np.array(data['datasets']['no_measures']))
#%%
#Barriendo angulo del IR con tisa apagado
jvec = [0]
jselected = jvec
plt.figure()
i = 0
for j in jvec:
if j in jselected:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
#plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
#%%
from scipy.optimize import curve_fit
import time
cwd = os.getcwd()
os.chdir('../20231123_CPTconmicromocion3')
from Data.EITfit.lolo_modelo_full_3niveles import GenerateNoisyCPT_fit
os.chdir(cwd)
# from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe = 0
titaprobe = 0.1
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
noiseamplitude = 0
selectedcurve=0
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_1ion(Freqs, offset, DetDoppler, DetRepump, SG, SP, SR, SCALE1, OFFSET, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
# BETA1 = 0
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
# U = 32.5e6
freqs = [2*f*1e-6-offset for f in Freqs]
#Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence1 = GenerateNoisyCPT_fit(SG, SR, SP, gPS, gPD, DetDoppler, DetRepump, U, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_1ion, FreqsDR, CountsDR, p0=[430, -25, 12, 0.9, 6.2, 3, 3e4, 2e3, 0.5e-3, 32e6], bounds=((0, -100, -20, 0, 0, 0, 0, 0, 0,20e6), (1000, 0, 50, 2, 20, 20, 5e6, 5e4, 15e-3,40e6)))
FittedEITpi_1_short, Detunings_1_short = FitEIT_MM_1ion(FreqsDR, *popt_1, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_1_long, Detunings_1_long = FitEIT_MM_1ion(freqslong, *popt_1, plot=True)
#%%
plt.figure()
plt.errorbar(Detunings_1_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='red', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_1_long, FittedEITpi_1_long, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.xlim(-20,0)
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
# u = 32.5e6
# B = (u/(2*np.pi))/c
# correccion = 8 #con 8 fitea bien
# offsetxpi = 440+1+correccion
# DetDoppler = -5.0-correccion
# FreqsDRpi_3 = [2*f*1e-6-offsetxpi+14 for f in Freqs_B[5]]
# CountsDRpi_3 = Counts_B[5]
# freqslongpi_3 = np.arange(min(FreqsDRpi_3), max(FreqsDRpi_3)+FreqsDRpi_3[1]-FreqsDRpi_3[0], 0.1*(FreqsDRpi_3[1]-FreqsDRpi_3[0]))
# #[1.71811842e+04 3.34325038e-17]
# def FitEITpi(freqs, SG, SP):
# temp = 2e-3
# MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
# FinalFluo = [f*6.554e4 + 1.863e3 for f in MeasuredFluo]
# return FinalFluo
# popt_tisaoff, pcov_tisaoff = curve_fit(FitEITpi, FreqsDRpi_3, CountsDRpi_3, p0=[0.5, 4.5], bounds=((0, 0), (2, 10)))
# print(popt_tisaoff)
# Sat_3 = popt_tisaoff[0]
# Det_3 = popt_tisaoff[1]
# FittedEITpi_3 = FitEITpi(freqslongpi_3, *popt_tisaoff)
# plt.figure()
# plt.errorbar(FreqsDRpi_3, CountsDRpi_3, yerr=2*np.sqrt(CountsDRpi_3), fmt='o', capsize=2, markersize=2)
# plt.plot(freqslongpi_3, FittedEITpi_3)
# #plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# FreqsCalibradas_B = FreqsDRpi_3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
??
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
Primero tengo mediciones de espectros cpt de un ion variando la tension dc_A
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231226_CPTconmicromocion4/Data/')
# CPT_FILES = """000016531-IR_Scan_withcal_optimized
# 000016532-IR_Scan_withcal_optimized
# """
folder = '../20231226_CPTconmicromocion4/Data'
CPT_FILES = f"""
{folder}/000016531-IR_Scan_withcal_optimized
{folder}/000016532-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
CountsSplit.append(Split(Counts[0],len(Freqs[0])))
CountsSplit.append(Split(Counts[1],len(Freqs[1])))
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
medic = 1 #puede ser 0 o 1
jvec = [28] # de la 1 a la 9 vale la pena, despues no
drs = [390.5, 399.5, 406, 413.5]
drive=22.1
Frequencies = Freqs[medic]
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Frequencies], CountsSplit[medic][j], yerr=np.sqrt(CountsSplit[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
"""
SUPERAJUSTE: TESTEO FITEOS
"""
cwd = os.getcwd()
os.chdir('../20231123_CPTconmicromocion3')
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
os.chdir(cwd)
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
# correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 1
SelectedCurveVec = [30]
for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, U, DL, PL, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
#Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DL, PL, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
t1 = time.time()
print(f'Beginning {selectedcurve}')
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[446, -36, 0.67, 8.5, 6e4, 250, 1, 0.3e-3, 32e6, 0.1, 0.15], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 31e6, 0, 0), (1000, -20, 2, 20, 5e5, 5e4, 10, 100e-3, 34e6, 10, 10)))
print(f'Ended {selectedcurve}, time elapsed: {round(time.time()-t1)} s')
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(popt_3_SA)
print(f'Beta: {popt_3_SA[6]} +- {np.sqrt(pcov_3_SA[6,6])}')
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
measurement = 1
SelectedCurveVec = np.arange(0,31,1)
#SelectedCurveVec = [17]
popt_SA_vec = []
pcov_SA_vec = []
Detuningsshort_vec = []
Counts_vec = []
Detuningslong_vec = []
FittedCounts_vec = []
Betas_vec = []
ErrorBetas_vec = []
Temp_vec = []
ErrorTemp_vec = []
DetuningsUV_vec = []
ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[measurement]
CountsDR = CountsSplit[measurement][selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
t1 = time.time()
print(f'Beginning {selectedcurve}')
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[443, -32, 0.67, 8, 4e4, 350, 1, 0.5e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 31e6), (1000, -20, 2, 20, 5e5, 5e4, 10, 100e-3, 34e6)))
print(f'Ended {selectedcurve}, time elapsed: {round(time.time()-t1)} s')
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
DetuningsUV_vec.append(popt_3_SA[1])
ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
Betas_vec.append(popt_3_SA[6])
ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
Temp_vec.append(popt_3_SA[7])
ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
Detuningsshort_vec.append(Detunings_3_SA_short)
Counts_vec.append(CountsDR)
Detuningslong_vec.append(Detunings_3_SA_long)
FittedCounts_vec.append(FittedEITpi_3_SA_long)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
medfin = 19
voltages_dcA = Voltages[0][0:medfin]
def lineal(x,a,b):
return a*x+b
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
hiperbola_or_linear = True
if hiperbola_or_linear:
#popthip,pcovhip = curve_fit(hiperbola,voltages_dcA[0:20],Betas_vec[0:20],p0=(100,0.1,1,-0.15))
#xhip = np.linspace(-0.23,0.055,200)
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec[:medfin],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.16,0.05,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[0:medfin],yerr=ErrorBetas_vec[:medfin],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.ylim(-1,4)
plt.grid()
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.y
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec[:medfin]],yerr=[t*1e3 for t in ErrorTemp_vec[:medfin]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.axhline(0.538)
#plt.yscale('log')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
medfin = 11
voltages_dcA = Voltages[0][1:medfin]
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA[:10],Betas_vec[:10],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.055,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[:medfin-1],yerr=ErrorBetas_vec[:medfin-1],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
#plt.yscale('log')
plt.grid()
#%%
from scipy.special import jv
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
def cuadratica(x,a,c):
return a*(x**2)+c
def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
ftrap=22.1
#gamma=30
P = ((jv(0, beta)**2)/((((det-x0)**2)+(0.5*gamma)**2)**2))*(-2*(det-x0))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det-x0))*((jv(i, beta))**2)/(((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det-x0))*(((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
#return 1/(A*P+B)
return 1/(A*P+B)
def MicromotionSpectra(beta,det, gamma):
ftrap=22.1
#gamma=23
P = (jv(0, beta)**2)/(((det)**2)+(0.5*gamma)**2)
i = 1
#print(P)
while i <= 5:
P = P + ((jv(i, beta))**2)/((((det)+i*ftrap)**2)+(0.5*gamma)**2) + ((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
def polynomial(x,a,b,c,d,e):
b=0
d=0
return a+b*x+c*x*x+d*x*x*x+e*x*x*x*x
def InverseDerivMicromotionSpectra(beta, det, gamma):
ftrap=22.1
#gamma=23
#det = -gamma/2
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 5:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return 1/P
def FinalTemp(beta,det, C,D):
gamma = 21
#det=-11
#D=-0.8
#C = 1.68656122e-03
#D = 6.64227010e-02
#C=0
#print(MicromotionSpectra(beta,det,gamma))
return (C*MicromotionSpectra(beta,det,gamma)+D*beta**2)*InverseDerivMicromotionSpectra(beta, det, gamma)
#return (C*MicromotionSpectra(beta,det,gamma))*InverseDerivMicromotionSpectra(beta, det, gamma)
"""
Temperatura vs beta con un ajuste exponencial
"""
medfin = 10
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:medfin],[t*1e3 for t in Temp_vec[:medfin]])
#popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:11],[t*1e3 for t in Temp_vec[:11]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
#popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:7], [t*1e3 for t in Temp_vec[:7]],p0=(-0.1, -10, 1)) #esto ajusta muy bien
popt_rho22_balance, pcov_rho22_balance = curve_fit(FinalTemp,Betas_vec[:medfin], [t*1e3 for t in Temp_vec[:medfin]],p0=(-10, 10,1)) #esto ajusta muy bien
popt_rho22_poly, pcov_rho22_poly = curve_fit(polynomial,Betas_vec[:medfin], [t*1e3 for t in Temp_vec[:medfin]],p0=(1,2,3,4,10)) #esto ajusta muy bien
print(popt_rho22_balance)
betaslong = np.arange(0,2.8,0.01)
print(f'Min temp predicted: {FinalTemp(betaslong,*popt_rho22_balance)[0]}')
print(f'Detuning: {popt_rho22_balance[0]} MHz')
print(f'rho22 coeff: {popt_rho22_balance[1]}')
print(f'betasquared coeff: {popt_rho22_balance[2]}')
print(f'cociente de los coeff: {popt_rho22_balance[2]/popt_rho22_balance[1]}')
print(f'params: {popt_rho22_balance}')
print(f'errores: {np.sqrt(np.diag(pcov_rho22_balance))}')
k_plot = medfin
plt.figure()
plt.errorbar(Betas_vec[:k_plot],[t*1e3 for t in Temp_vec[:k_plot]],xerr=ErrorBetas_vec[:k_plot], yerr=[t*1e3 for t in ErrorTemp_vec[:k_plot]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,polynomial(betaslong,*popt_rho22_poly),label='Ajuste exponencial')
#plt.plot(betaslong,FinalTemp(betaslong,popt_rho22_balance[0],popt_rho22_balance[1],popt_rho22_balance[2]*1),label='Ajuste con espectro modulado')
plt.xlim(-0,3)
plt.ylim(0,1)
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.legend()
plt.grid()
#%%
hbar=1.05e-34
gammita = 22.1e6
kx = 2*np.pi/(0.397e-6)
kb = 1.38e-23
masita = 6.6e-26
coeff = gammita*hbar*hbar*kx*kx/(6*kb*masita)
print(coeff)
rfheatrate = coeff*popt_rho22_balance[2]/popt_rho22_balance[1]
print(f'heating rate due to rf heating: {rfheatrate*1e3} mK/s')
#%%
"""
Esto no es del super ajuste sino de los ajustes anteriores en donde DetDoppler y offset son puestos a mano
Aca grafico los betas con su error en funcion de la tension variada.
Ademas, hago ajuste lineal para primeros y ultimos puntos, ya que espero que
si la tension hace que la posicion del ion varie linealmente, el beta varia proporcional a dicha posicion.
"""
import seaborn as sns
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
betavector = [beta1,beta2,beta3,beta4,beta5,beta6,beta7,beta8,beta9]
errorbetavector = [errorbeta1,errorbeta2,errorbeta3,errorbeta4,errorbeta5,errorbeta6,errorbeta7,errorbeta8,errorbeta9]
voltages_dcA = Voltages[0][1:10]
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],betavector[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],betavector[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,betavector,yerr=errorbetavector,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
"""
Aca veo la temperatura del ion en funcion del voltaje del endcap, ya que
al cambiar la cantidad de micromocion, cambia la calidad del enfriado
"""
tempvector = np.array([temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9])*1e3
errortempvector = np.array([errortemp1,errortemp2,errortemp3,errortemp4,errortemp5,errortemp6,errortemp7,errortemp8,errortemp9])*1e3
voltages_dcA = Voltages[0][1:10]
plt.figure()
plt.errorbar(voltages_dcA,tempvector,yerr=errortempvector,fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
plt.ylim(0,2)
#%%
"""
Por las dudas, temperatura en funcion de beta
"""
plt.figure()
plt.errorbar(betavector,tempvector,yerr=errortempvector,xerr=errorbetavector,fmt='o',capsize=5,markersize=5)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
"""
Si quiero ver algun parametro del ajuste puntual. el orden es: 0:SG, 1:SP, 2:SCALE1, 3:OFFSET
"""
ki=2
plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_5[ki],popt_6[ki],popt_7[ki],popt_8[ki],popt_9[ki]],yerr=[np.sqrt(pcov_1[ki,ki]),np.sqrt(pcov_2[ki,ki]),np.sqrt(pcov_3[ki,ki]),np.sqrt(pcov_4[ki,ki]),np.sqrt(pcov_5[ki,ki]),np.sqrt(pcov_6[ki,ki]),np.sqrt(pcov_7[ki,ki]),np.sqrt(pcov_8[ki,ki]),np.sqrt(pcov_9[ki,ki])], fmt='o',capsize=3,markersize=3)
#%%
"""
AHORA VAMOS A MEDICIONES CON MAS DE UN ION!!!
"""
"""
Ploteo la cpt de referencia / plotting the reference CPT
1: 2 iones, -100 mV dcA
2: 2 iones, -150 mV dcA
3: 2 iones, -50 mV dcA
4: 2 iones, 5 voltajes (el ion se va en la 4ta medicion y en la 5ta ni esta)
5, 6 y 7: 3 iones en donde el scaneo esta centrado en distintos puntos
"""
jvec = [3] # desde la 1, pero la 4 no porque es un merge de curvitas
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
"""
Mergeo la 5, 6 y 7
"""
Freqs5 = [2*f*1e-6 for f in Freqs[5]]
Freqs6 = [2*f*1e-6 for f in Freqs[6]]
Freqs7 = [2*f*1e-6 for f in Freqs[7]]
Counts5 = Counts[5]
Counts6 = Counts[6]
Counts7 = Counts[7]
i_1_ini = 0
i_1 = 36
i_2_ini = 0
i_2 = 24
f_1 = 18
f_2 = 30
scale_1 = 0.92
scale_2 = 0.98
#Merged_freqs_test = [f-f_2 for f in Freqs6[i_2_ini:i_2]]+[f-f_1 for f in Freqs5[i_1_ini:i_1]]+Freqs7
#plt.plot(Merged_freqs_test,'o')
Merged_freqs = [f-f_2 for f in Freqs6[0:i_2]]+[f-f_1 for f in Freqs5[0:i_1]]+Freqs7
Merged_counts = [scale_2*c for c in Counts6[0:i_2]]+[scale_1*c for c in Counts5[0:i_1]]+list(Counts7)
Merged_freqs_rescaled = np.linspace(np.min(Merged_freqs),np.max(Merged_freqs),len(Merged_freqs))
#drs = [391.5, 399.5, 405.5, 414]
drs = [370,379,385,391.5]
plt.figure()
i = 0
for j in jvec:
plt.plot([f-f_1 for f in Freqs5[0:i_1]], [scale_1*c for c in Counts5[0:i_1]],'o')
plt.plot([f-f_2 for f in Freqs6[0:i_2]], [scale_2*c for c in Counts6[0:i_2]],'o')
plt.plot(Freqs7, Counts7,'o')
plt.errorbar(Merged_freqs, Merged_counts, yerr=np.sqrt(Merged_counts), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
for dr in drs:
plt.axvline(dr)
plt.axvline(dr+drive, color='red', linestyle='dashed', alpha=0.3)
plt.axvline(dr-drive, color='red', linestyle='dashed', alpha=0.3)
plt.legend()
#%%
"""
ajusto la mergeada de 3 iones
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = -20
offsetxpi = 438+correccion
DetDoppler = -35-correccion-22
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [f-offsetxpi for f in Merged_freqs]
CountsDR = Merged_counts
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, SCALE3, OFFSET, BETA1, BETA2, BETA3):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
#BETA1, BETA2, BETA3 = 0, 0, 2
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence3 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA3, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
ScaledFluo3 = np.array([f*SCALE3 for f in Fluorescence3])
return ScaledFluo1+ScaledFluo2+ScaledFluo3+OFFSET
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3ions, pcov_3ions = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.6, 6.2, 3.5e5, 3.5e5, 3.5e5, 2e3, 1, 1, 1], bounds=((0, 0, 0, 0, 0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 5e8, 7e3, 10, 10, 10)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
#FittedEITpi_3ions = FitEIT_MM(freqslong, popt_3ions[0],popt_3ions[1],popt_3ions[2],popt_3ions[3],popt_3ions[4],popt_3ions[5],4,2,0)
#FittedEITpi_3ions = FitEIT_MM(freqslong, *popt_3ions)
print(popt_3ions)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_3ions, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
Veo la medicion de varios voltajes uno atras de otro
Se va en medio de la medicion 4, y en la 5 ni esta
"""
jvec = [2] # desde la 1, pero la 4 no porque es un merge de curvitas
Freqs
plt.figure()
i = 0
for j in jvec:
plt.errorbar([2*f*1e-6 for f in Freqs[4]], CountsSplit_2ions[0][j], yerr=np.sqrt(CountsSplit_2ions[0][j]), fmt='o', capsize=2, markersize=2)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
#for dr in drs:
# plt.axvline(dr)
#plt.axvline(dr+drive)
plt.legend()
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
SUPER AJUSTE PARA MED DE 2 IONES
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [3]
popt_SA_vec_2ions = []
pcov_SA_vec_2ions = []
for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, SCALE2, OFFSET, BETA1, BETA2, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
#SG = 0.6
#SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 for f in Fluorescence2])
if plot:
return ScaledFluo1+ScaledFluo2, Detunings
else:
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3_SA_2ions, pcov_3_SA_2ions = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[448, -42, 0.6, 8.1, 4e4, 4e4, 6e3, 1, 1.2, 0.5e-3], bounds=((0, -100,0, 0, 0,0,0,0,0, 0), (1000, 0, 2, 20,5e6, 5e6,5e4, 10, 10,10e-3)))
#popt_3_SA_2ions = [448, -42, 8e4, 6e3, 2, 0.5e-3]
popt_SA_vec_2ions.append(popt_3_SA_2ions)
pcov_SA_vec_2ions.append(pcov_3_SA_2ions)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA_2ions, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA_2ions, plot=True)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA_2ions)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')
#%%
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
AJUSTO LA CPT DE 2 IONES CON UN MODELO EN DONDE SUMO DOS ESPECTROS CON BETAS DISTINTOS
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 27
offsetxpi = 421+correccion
DetDoppler = -16-correccion+5
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
FreqsDR = [2*f*1e-6-offsetxpi for f in Freqs[1]]
CountsDR = Counts[1]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM(freqs, SG, SP, SCALE1, SCALE2, OFFSET):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
TEMP = 0.1e-3
BETA1, BETA2 = 3, 0
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence2 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA2, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
ScaledFluo2 = np.array([f*SCALE2 + OFFSET for f in Fluorescence2])
return ScaledFluo1+ScaledFluo2
#return ScaledFluo1
do_fit = True
if do_fit:
popt_2ions_1, pcov_2ions_1 = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.9, 6.2, 3.5e3, 2.9e3, 3e3], bounds=((0, 0, 0, 0, 0), (2, 20, 5e8, 5e8, 8e3)))
#popt, pcov = curve_fit(FitEIT_MM, FreqsDR, CountsDR, p0=[0.8, 8, 4e4, 3.5e3, 0], bounds=((0, 0, 0, 0, 0), (2, 15, 1e5, 1e5, 10)))
#array([7.12876797e-01, 7.92474752e+00, 4.29735308e+04, 1.74240582e+04,
#1.53401696e+03, 1.17073206e-06, 2.53804151e+00])
FittedEITpi_2sp = FitEIT_MM(freqslong, *popt_2ions_1)
#FittedEITpi = FitEIT_MM(freqslong, 0.8, 8, 4e4, 3.5e3, 0)
# beta1_2ions = popt_2ions_1[5]
# beta2_2ions = popt_2ions_1[6]
# errbeta1_2ions = np.sqrt(pcov_2ions_1[5,5])
# errbeta2_2ions = np.sqrt(pcov_2ions_1[6,6])
"""
Estos params dan bien poniendo beta2=0 y correccion=0 y son SG, SP, SCALE1, SCALE2, OFFSET, BETA1
#array([9.03123248e-01, 6.25865542e+00, 3.47684055e+04, 2.92076804e+04, 1.34556420e+03, 3.55045904e+00])
"""
"""
Ahora considerando ambos betas, con los parametros iniciales dados por los que se obtuvieron con beta2=0
y correccion=0 dan estos parametros que son los de antes pero con BETA2 incluido:
array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
"""
#arreglito = np.array([8.52685426e-01, 7.42939084e+00, 3.61998310e+04, 3.40160472e+04, 8.62651715e+02, 3.89756335e+00, 7.64867601e-01])
FittedEITpi_2ions_1 = FitEIT_MM(freqslong, *popt_2ions_1)
print(popt_2ions_1)
plt.figure()
plt.errorbar(FreqsDR, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(freqslong, FittedEITpi_2ions_1, color='darkgreen', linewidth=3)
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.title(f'Corr:{correccion},DetD:{DetDoppler}')
plt.grid()
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from scipy.optimize import curve_fit
import time
"""
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 0
phiprobe = 0
titaprobe = 90
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
correccion = 13
#DetDoppler = -11.5-correccion
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
#SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
SelectedCurveVec = [0]
# popt_SA_vec = []
# pcov_SA_vec = []
# Detuningsshort_vec = []
# Counts_vec = []
# Detuningslong_vec = []
# FittedCounts_vec = []
# Betas_vec = []
# ErrorBetas_vec = []
# Temp_vec = []
# ErrorTemp_vec = []
# DetuningsUV_vec = []
# ErrorDetuningsUV_vec = []
for selectedcurve in SelectedCurveVec:
#selectedcurve = 2 #IMPORTANTE: SELECCIONA LA MEDICION
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, U, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 25e6), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3, 40e6)))
# popt_SA_vec.append(popt_3_SA)
# pcov_SA_vec.append(pcov_3_SA)
FittedEITpi_3_SA_short, Detunings_3_SA_short = FitEIT_MM_single(FreqsDR, *popt_3_SA, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_3_SA_long, Detunings_3_SA_long = FitEIT_MM_single(freqslong, *popt_3_SA, plot=True)
# DetuningsUV_vec.append(popt_3_SA[1])
# ErrorDetuningsUV_vec.append(np.sqrt(pcov_3_SA[1,1]))
# Betas_vec.append(popt_3_SA[6])
# ErrorBetas_vec.append(np.sqrt(pcov_3_SA[6,6]))
# Temp_vec.append(popt_3_SA[7])
# ErrorTemp_vec.append(np.sqrt(pcov_3_SA[7,7]))
# Detuningsshort_vec.append(Detunings_3_SA_short)
# Counts_vec.append(CountsDR)
# Detuningslong_vec.append(Detunings_3_SA_long)
# FittedCounts_vec.append(FittedEITpi_3_SA_long)
plt.figure()
plt.errorbar(Detunings_3_SA_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='darkgreen', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_3_SA_long, FittedEITpi_3_SA_long, color='darkolivegreen', linewidth=3, label=f'med {selectedcurve}')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
plt.legend(loc='upper left', fontsize=20)
plt.grid()
print(f'listo med {selectedcurve}')
print(popt_3_SA)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment