Commit b25a253b authored by Marcelo Luda's avatar Marcelo Luda

graficos publicacion

parent 2fdd462f
......@@ -7,6 +7,11 @@
reingenieria del código que anda
Surge de fusionar
Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
Data/EITfit/MM_eightLevel_2repumps_python_scripts.py
MAPA de FUNCIONES
CPTspectrum8levels_MM
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Ploteo de datos y ajustes
Ploteo de datos y ajustes del barrido en voltaje del Endcap
equivalente a pasear el ion en algun entorno del punto de compensación ideal
y ver los efectos de micromoción (y tal vez temperatura)
@author: lolo
"""
......@@ -24,6 +29,7 @@ from time import time
# /home/lolo/Dropbox/marce/LIAF/Trampa_anular/artiq_experiments/analisis/plots/20231123_CPTconmicromocion3/Data/EITfit/MM_eightLevel_2repumps_AnalysisFunctions.py
from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Acá hay un análisis de la estabilidad del campo magnético (presuntamente).
Se midieron N veces el mismo espectro y se analiza la variación del spliting
de picos CPT que se debe al efecto Zeeman.
El gráfico final muestra el corrimiento en procentual
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
Mediciones de una resonancia oscura DD multiples veces a lo largo de una noche para ver estabilidad de B
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
# os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20231212_Bstability/Data/')
# CPT_FILES = """000016432-IR_Scan_withcal_optimized
# 000016433-IR_Scan_withcal_optimized
# 000016434-IR_Scan_withcal_optimized
# 000016435-IR_Scan_withcal_optimized
# 000016436-IR_Scan_withcal_optimized
# 000016437-IR_Scan_withcal_optimized
# 000016438-IR_Scan_withcal_optimized
# 000016439-IR_Scan_withcal_optimized
# 000016440-IR_Scan_withcal_optimized
# 000016441-IR_Scan_withcal_optimized
# 000016442-IR_Scan_withcal_optimized
# 000016443-IR_Scan_withcal_optimized
# """
folder = '../20231212_Bstability/Data/'
CPT_FILES = f"""
{folder}/000016434-IR_Scan_withcal_optimized
{folder}/000016435-IR_Scan_withcal_optimized
{folder}/000016436-IR_Scan_withcal_optimized
{folder}/000016437-IR_Scan_withcal_optimized
{folder}/000016438-IR_Scan_withcal_optimized
{folder}/000016439-IR_Scan_withcal_optimized
{folder}/000016440-IR_Scan_withcal_optimized
{folder}/000016441-IR_Scan_withcal_optimized
{folder}/000016442-IR_Scan_withcal_optimized
{folder}/000016443-IR_Scan_withcal_optimized
""".strip()
CALIB_FILES = f"""{folder}/000016430-IR_Scan_withcal_optimized"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(CPT_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
CalibCounts = []
CalibFreqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
Voltages = []
for i, fname in enumerate(CPT_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['data_array']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
Voltages.append(np.array(data['datasets']['scanning_voltages']))
for i, fname in enumerate(CALIB_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
CalibFreqs.append(np.array(data['datasets']['IR1_Frequencies']))
CalibCounts.append(np.array(data['datasets']['counts_spectrum']))
def Split(array,n):
length=len(array)/n
splitlist = []
jj = 0
while jj<length:
partial = []
ii = 0
while ii < n:
partial.append(array[jj*n+ii])
ii = ii + 1
splitlist.append(partial)
jj = jj + 1
return splitlist
CountsSplit = []
k=0
for k in range(len(Counts)):
CountsSplit.append(Split(Counts[k],len(Freqs[k])))
#%%
from scipy.optimize import curve_fit
def lorentzian(x,A,B,x0,g,C):
return 2*(A/np.pi)*g/(g**2 + 4*(x-x0)**2)+B+C*(x-x0)
Freqscal = [2*f*1e-6 for f in CalibFreqs[0]]
Countscal = CalibCounts[0]
popt_dr1, pcov_dr1 = curve_fit(lorentzian,Freqscal[37:47],Countscal[37:47],p0=(-1000,1000,436,1,1))
popt_dr2, pcov_dr2 = curve_fit(lorentzian,Freqscal[90:120],Countscal[90:120],p0=(-1000,1000,443,1,1))
DeltaFreqs = popt_dr2[2]-popt_dr1[2]
ZeroFrequency = 0.5*(popt_dr2[2]+popt_dr1[2])
plt.figure()
plt.plot(Freqscal,Countscal,'o')
plt.plot(Freqscal,lorentzian(Freqscal,*popt_dr1))
plt.plot(Freqscal,lorentzian(Freqscal,*popt_dr2))
plt.axvline(ZeroFrequency)
print(DeltaFreqs)
"""
Estas cuentas estan en el cuaderno SMILE MORE WORRY LESS pag 25.
La resonancia de la izquierda esta a (-4/5)*u. La de la derecha esta a (4/5)*u.
Por ende la diferencia es (8/5)*u.
Definimos u como 1.4 MHz/G * B. Entonces Despejamos B facilmente.
"""
ub = 9.27e-24
h = 6.63e-34
u = 1e-6*(ub/h)*1e-4 #en unidades de MHz/G
MagneticField = DeltaFreqs/((8/5)*u)
print(f'Magnetic field: {MagneticField}')
#%%
"""
Ploteo la cpt de referencia / plotting the reference CPT
"""
freqs = [2*f*1e-6 for f in Freqs[0]]
def lorentzian(x,A,B,x0,g,C):
return 2*(A/np.pi)*g/(g**2 + 4*(x-x0)**2)+B+C*(x-x0)
# ii_plot = 11
# jj_plot = 0
ii_plot = 9
jj_plot = 0
ii_problematic = []
jj_problematic = []
Centers = []
Widths = []
test = []
for ii in range(len(CountsSplit)):
for jj in range(len(CountsSplit[0])):
# print(ii)
# print(jj)
try:
if ii==2 and jj==11:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[:-10], CountsSplit[ii][jj][:-10],p0=(-1000,1000,436,1,1))
elif ii==2 and jj==12:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[40:], CountsSplit[ii][jj][40:],p0=(-1000,1000,436,1,1))
elif ii==4 and jj==1:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs[:-86], CountsSplit[ii][jj][:-86],p0=(-1000,1000,436,1,1))
elif ii==4 and jj==2:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==7:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==12:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==13:
popt_lorentz = [0,0,0,0,0]
elif ii==4 and jj==14:
popt_lorentz = [0,0,0,0,0]
elif ii==11 and jj==2:
popt_lorentz = [0,0,0,0,0]
elif ii==11 and jj==3:
popt_lorentz = [0,0,0,0,0]
else:
popt_lorentz, pcov_lorentz = curve_fit(lorentzian, freqs, CountsSplit[ii][jj],p0=(-1000,1000,436,1,1))
if popt_lorentz[2]>435.95 or popt_lorentz[2]<435.8:
if popt_lorentz[2]==0:
pass
else:
ii_problematic.append(ii)
jj_problematic.append(jj)
except:
popt_lorentz=[0,0,0,0]
print("except")
print(ii,jj)
if ii == ii_plot and jj == jj_plot:
print('MATCH')
test.append(popt_lorentz)
Centers.append(popt_lorentz[2])
Widths.append(popt_lorentz[3])
prob = 4
print(ii_problematic[prob])
print(jj_problematic[prob])
kk=-83
plt.figure()
plt.plot(freqs, CountsSplit[ii_problematic[prob]][jj_problematic[prob]])
plt.plot(freqs[kk], CountsSplit[ii_problematic[prob]][jj_problematic[prob]][kk],'o',markersize=10)
plt.plot(freqs,lorentzian(freqs,*test[0]))
#%%
"""
Usando que la DR de la izquierda esta a (-4/5)u, donde u = 1.4 MHz/G * B,
despejo y convierto la posicion de esa resonancia a campo magnetico
"""
def ConvertFreqsToMagneticField(f,zerofreq,u):
return np.abs(f-zerofreq)*(5/4)/(1.4)
lentotal = len(CountsSplit)*len(CountsSplit[0])
medtime=4/60
timevec = np.linspace(0,medtime*lentotal, lentotal)
plt.figure()
plt.plot(timevec[4:],ConvertFreqsToMagneticField(Centers,ZeroFrequency,u)[4:],'o')
plt.ylim(3.670,3.730)
plt.xlabel('Time (h)')
plt.ylabel('Magnetic field (G)')
plt.figure()
plt.plot(timevec[4:],[100*c/3.718 for c in ConvertFreqsToMagneticField(Centers,ZeroFrequency,u)][4:],'o')
plt.ylim(98.5,100.1)
plt.xlabel('Time (h)')
plt.ylabel('Magnetic field variation (percent)')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
??
@author: lolo
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
"""
CPT con tres laseres pero lso dos IR son el mismo entonces las DD son mas finas
"""
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211223_CPT_DosLaseres_v07_ChristmasSpecial\Data
folder = '../20231218_CPT_DosLaseres_Reflotoajustes/Data'
ALL_FILES = f"""
{folder}/000016420-IR_Scan_withcal_optimized
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
UVCPTAmp = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(str(i) + ' - ' + fname)
#print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
#UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
#No_measures.append(np.array(data['datasets']['no_measures']))
#%%
#Barriendo angulo del IR con tisa apagado
jvec = [0]
jselected = jvec
plt.figure()
i = 0
for j in jvec:
if j in jselected:
plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], yerr=np.sqrt(Counts[j]), fmt='o', capsize=2, markersize=2)
#plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'Amp Tisa: {AmpTisa[i]}', mb arkersize=3)
i = i + 1
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
#%%
from scipy.optimize import curve_fit
import time
cwd = os.getcwd()
os.chdir('../20231123_CPTconmicromocion3')
from Data.EITfit.lolo_modelo_full_3niveles import GenerateNoisyCPT_fit
os.chdir(cwd)
# from Data.EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
phidoppler, titadoppler = 0, 90
phirepump, titarepump = 0, 90
phiprobe = 0
titaprobe = 0.1
Temp = 0.5e-3
sg = 0.544
sp = 4.5
sr = 0
DetRepump = 0
lw = 0.1
DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth = lw, lw, lw #ancho de linea de los laseres
u = 32.5e6
#B = (u/(2*np.pi))/c
gPS, gPD, = 2*np.pi*21.58e6, 2*np.pi*1.35e6
alpha = 0
drivefreq = 2*np.pi*22.135*1e6
noiseamplitude = 0
selectedcurve=0
FreqsDR = Freqs[selectedcurve]
CountsDR = Counts[selectedcurve]
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_1ion(Freqs, offset, DetDoppler, DetRepump, SG, SP, SR, SCALE1, OFFSET, TEMP, U, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
# BETA1 = 0
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
# U = 32.5e6
freqs = [2*f*1e-6-offset for f in Freqs]
#Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, titaprobe, BETA1, drivefreq, min(freqs), max(freqs)+(freqs[1]-freqs[0]), freqs[1]-freqs[0], circularityprobe=CircPr, plot=False, solvemode=1, detpvec=None)
Detunings, Fluorescence1 = GenerateNoisyCPT_fit(SG, SR, SP, gPS, gPD, DetDoppler, DetRepump, U, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, TEMP, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
if plot:
return ScaledFluo1, Detunings
else:
return ScaledFluo1
#return ScaledFluo1
do_fit = True
if do_fit:
popt_1, pcov_1 = curve_fit(FitEIT_MM_1ion, FreqsDR, CountsDR, p0=[430, -25, 12, 0.9, 6.2, 3, 3e4, 2e3, 0.5e-3, 32e6], bounds=((0, -100, -20, 0, 0, 0, 0, 0, 0,20e6), (1000, 0, 50, 2, 20, 20, 5e6, 5e4, 15e-3,40e6)))
FittedEITpi_1_short, Detunings_1_short = FitEIT_MM_1ion(FreqsDR, *popt_1, plot=True)
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
FittedEITpi_1_long, Detunings_1_long = FitEIT_MM_1ion(freqslong, *popt_1, plot=True)
#%%
plt.figure()
plt.errorbar(Detunings_1_short, CountsDR, yerr=2*np.sqrt(CountsDR), fmt='o', color='red', alpha=0.5, capsize=2, markersize=2)
plt.plot(Detunings_1_long, FittedEITpi_1_long, color='darkolivegreen', linewidth=3, label='med 1')
#plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
plt.xlabel('Detuning (MHz)')
plt.ylabel('Counts')
#plt.xlim(-20,0)
plt.legend(loc='upper left', fontsize=20)
plt.grid()
#%%
# u = 32.5e6
# B = (u/(2*np.pi))/c
# correccion = 8 #con 8 fitea bien
# offsetxpi = 440+1+correccion
# DetDoppler = -5.0-correccion
# FreqsDRpi_3 = [2*f*1e-6-offsetxpi+14 for f in Freqs_B[5]]
# CountsDRpi_3 = Counts_B[5]
# freqslongpi_3 = np.arange(min(FreqsDRpi_3), max(FreqsDRpi_3)+FreqsDRpi_3[1]-FreqsDRpi_3[0], 0.1*(FreqsDRpi_3[1]-FreqsDRpi_3[0]))
# #[1.71811842e+04 3.34325038e-17]
# def FitEITpi(freqs, SG, SP):
# temp = 2e-3
# MeasuredFreq, MeasuredFluo = GenerateNoisyCPT_fit(SG, sr, SP, gPS, gPD, DetDoppler, DetRepump, u, DopplerLaserLinewidth, RepumpLaserLinewidth, ProbeLaserLinewidth, temp, alpha, phidoppler, titadoppler, phiprobe, [titaprobe], phirepump, titarepump, freqs, plot=False, solvemode=1, detpvec=None, noiseamplitude=noiseamplitude)
# FinalFluo = [f*6.554e4 + 1.863e3 for f in MeasuredFluo]
# return FinalFluo
# popt_tisaoff, pcov_tisaoff = curve_fit(FitEITpi, FreqsDRpi_3, CountsDRpi_3, p0=[0.5, 4.5], bounds=((0, 0), (2, 10)))
# print(popt_tisaoff)
# Sat_3 = popt_tisaoff[0]
# Det_3 = popt_tisaoff[1]
# FittedEITpi_3 = FitEITpi(freqslongpi_3, *popt_tisaoff)
# plt.figure()
# plt.errorbar(FreqsDRpi_3, CountsDRpi_3, yerr=2*np.sqrt(CountsDRpi_3), fmt='o', capsize=2, markersize=2)
# plt.plot(freqslongpi_3, FittedEITpi_3)
# #plt.title(f'Sdop: {round(popt[0], 2)}, Spr: {round(popt[1], 2)}, T: {round(popt[2]*1e3, 2)} mK, detDop: {DetDoppler} MHz')
# FreqsCalibradas_B = FreqsDRpi_3
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment