Commit 55502aaf authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto
parents 462672c7 1413067c
......@@ -355,14 +355,22 @@ FIGURA PAPER
jselected = [1, 5, 12]
t0=0.18
plt.figure()
plt.plot([f*1e6 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[0]])
plt.plot(RefBins[90:], [expo(r, *popt_vec[jselected[0]]) for r in RefBins[90:]])
plt.plot([f*1e6 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[1]])
plt.plot(RefBins[90:], [expo(r, *popt_vec[jselected[1]]) for r in RefBins[90:]])
plt.plot([f*1e6 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[2]])
plt.plot(RefBins[90:], [expo(r, *popt_vec[jselected[2]]) for r in RefBins[90:]])
plt.xlim(-0.5,4)
plt.plot([f*1e6-t0 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[0]])
plt.plot([r-t0 for r in RefBins[90:]], [expo(r, *popt_vec[jselected[0]]) for r in RefBins[90:]])
plt.plot([f*1e6-t0 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[1]])
plt.plot([r-t0 for r in RefBins[90:]], [expo(r, *popt_vec[jselected[1]]) for r in RefBins[90:]])
plt.plot([f*1e6-t0 for f in SP_Bins[jselected[0]][:-1]], SP_Heigths[jselected[2]])
plt.plot([r-t0 for r in RefBins[90:]], [expo(r, *popt_vec[jselected[2]]) for r in RefBins[90:]])
plt.xlim(-0.5,3)
plt.xlabel('Time (us)')
plt.ylabel('Counts')
plt.savefig('fig3_01.pdf')
plt.savefig('fig3_01.svg')
#%%
"""
......
This diff is collapsed.
This diff is collapsed.
......@@ -29,12 +29,12 @@ for cambio in [0]: # esto es para shiftear la potencia medida
capsize=3)
#ax2.errorbar(potencias/(np.pi*(rad**2)), dataREAL.Tau*1e6, \
# yerr = 1e6*errsSIM.stdval.values, \
# fmt='.--', ms=6, lw=.5, \
# color="#3949ab",
# capsize=3,
# label=f'r={rad}; cambio={cambio}')
ax2.errorbar(potencias/(np.pi*(rad**2)), dataREAL.Tau*1e6, \
yerr = 1e6*errsSIM.stdval.values, \
fmt='.--', ms=6, lw=.5, \
color="#3949ab",
capsize=3,
label=f'r={rad}; cambio={cambio}')
ax2.set_xlim([1.2e-4, 0.2e-1])
ax2.set_ylim([2e-1, 0.8e1])
......@@ -47,4 +47,13 @@ ax2.grid(which='minor', alpha=0.2)
ax2.set_xscale("log")
ax2.set_yscale("log")
plt.savefig('fig3_02.pdf')
plt.savefig('fig3_02.svg')
......@@ -11,6 +11,8 @@ os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20221024_Branchi
Long_files = ['DP_long', 'SP_long']
Calib_files = ['Fondo_IR_50M', 'Fondo_UV_50M']
Short_files = [9132, 9134, 9136, 9138, 9140, 9142]
Fondo_files = [9133, 9135, 9137, 9139, 9141, 9143]
def expo(T, tau, N0, C):
global T0
......@@ -89,6 +91,44 @@ for i, fname in enumerate(Calib_files):
Calib_Heigths.append(heigs)
Calib_Bins.append(binsf)
BINW_short = 5e-9
T0_short = -0.4e-6
Short_Heigths = []
Short_Bins = []
for i, fname in enumerate(Short_files):
#print(i)
#print(fname)
data = h5py.File('Data/Cortas/'+'00000'+str(fname)+'-SingleLine.h5', 'r')
counts = np.array(data['datasets']['counts'])
bines = np.arange(counts.min(), counts.max()+BINW_short, BINW_short)
heigs, binsf = np.histogram(counts, bines[bines>T0_short])
Short_Heigths.append(heigs)
Short_Bins.append(binsf)
BINW_fondo = 5e-9
T0_fondo = -0.4e-6
Fondo_Heigths = []
Fondo_Bins = []
for i, fname in enumerate(Fondo_files):
#print(i)
#print(fname)
data = h5py.File('Data/Fondos/00000'+str(fname)+'-SingleLine.h5', 'r')
counts = np.array(data['datasets']['counts'])
bines = np.arange(counts.min(), counts.max()+BINW_fondo, BINW_fondo)
heigs, binsf = np.histogram(counts, bines[bines>T0_fondo])
Fondo_Heigths.append(heigs)
Fondo_Bins.append(binsf)
......@@ -109,8 +149,8 @@ RefBins = [t*1e6 for t in Long_Bins[0][:-1]]
plt.figure()
#for i in range(len(Long_Heigths)):
# plt.plot(Long_Bins[i][:-1], Long_Heigths[i])
for i in range(len(Long_Heigths)):
plt.plot(Long_Bins[i][:-1], Long_Heigths[i])
for i in range(len(Calib_Heigths)):
plt.plot(Calib_Bins[i][:-1], Calib_Heigths[i])
......@@ -131,6 +171,109 @@ branch = TotalSPfinal/(TotalSPfinal+TotalDPfinal)
print(branch)
#%%
"""
Acondicionamiento señales
"""
SP_corrected = [Long_Heigths[1][k]-Calib_Heigths[1][k] for k in range(len(Long_Heigths[1]))]
DP_corrected = [Long_Heigths[0][k]-Calib_Heigths[0][k] for k in range(len(Long_Heigths[0]))]
plt.plot(Long_Bins[1][:-1], SP_corrected)
plt.plot(Long_Bins[0][:-1], DP_corrected)
#%%
"""
Figura branching
"""
import matplotlib
import seaborn as sns
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
plt.style.use('seaborn-bright')
plt.rcParams.update({
"text.usetex": False,
})
#plt.figure()
#plt.plot(Stat_Bins[0][:-1], Stat_Heigths[0])
#plot figuras papers
colors1=sns.color_palette("rocket", 10)
colors2=sns.color_palette("mako", 10)
color2 = colors2[1]
color3 = colors2[4]
color1 = colors2[8]
bins1 = np.arange(150,300, 1)
bins2 = np.arange(0,50,1)
bins3 = np.arange(30,100,1)
plt.figure(figsize = (3.8,3))
plt.plot([1e6*b-0.18 for b in Long_Bins[1][:-1]], SP_corrected, color=(0,0,128/255, 1),linewidth=2.5,label='SP transition')
plt.plot([1e6*b+0.09 for b in Long_Bins[0][:-1]], DP_corrected, color=(212/255,0,0, 1),linewidth=2.5,label='DP transition')
#plt.hist(Stat_Heigths[0], bins=bins1, histtype='step',density = True,color = color1, alpha = 0.6)#,label = 'BG')
#plt.hist(Stat_Heigths[1], bins=bins2, histtype='step',density = True,color = color2, alpha = 0.6)#,label = 'UV laser')
#plt.hist(Stat_Heigths[2], bins=bins3, histtype='step',density = True,color = color3, alpha = 0.6)#,label = 'Ion')
#plt.legend(loc=(0.15,0.65), prop={'size': 11})
plt.legend()
plt.grid()
plt.tight_layout()
plt.xlim(-0.3, 2)
plt.xticks([0, 1, 2], fontname='STIXGeneral')
plt.yticks([0,5000, 10000, 15000], fontname='STIXGeneral')
plt.xlabel('Time (us)', fontname='STIXGeneral')
plt.ylabel('Counts', fontname='STIXGeneral')
#poissoneidad = np.var(Stat_Heigths)/np.mean(Stat_Heigths)
#plt.title('Varianza/media = {:.4f}'.format(poissoneidad))
#plt.savefig('bg_laser_ion_stats.pdf',dpi = 600 )
name='fig02a'
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Papers/2022 Transient Phenomena JOSA B/Figures/'+name+'.pdf')
plt.savefig('/home/nico/Nextcloud/G_liaf/Publicaciones/Papers/2022 Transient Phenomena JOSA B/Figures/'+name+'.svg')
#%%
"""
Ahora mido de nuevo pero alternando medicion y fondo para que de mejor si hay derivas de potencias.
Estas mediciones DAN MUY BIEN. Tanto branching fraction como detection efficiency.
"""
med = 3
plt.plot(Short_Bins[med][:-1],Short_Heigths[med])
plt.plot(Fondo_Bins[med][:-1],Fondo_Heigths[med])
TotalSP = np.sum(Short_Heigths[2])-np.sum(Fondo_Heigths[2])+np.sum(Short_Heigths[4])-np.sum(Fondo_Heigths[4])
TotalDP = np.sum(Short_Heigths[3])-np.sum(Fondo_Heigths[3])+np.sum(Short_Heigths[5])-np.sum(Fondo_Heigths[5])
branch = TotalSP/(TotalSP+TotalDP)
print(branch)
ErrorSP = np.sqrt(np.sum(Short_Heigths[2])+np.sum(Fondo_Heigths[2])+np.sum(Short_Heigths[4])+np.sum(Fondo_Heigths[4]))
ErrorDP = np.sqrt(np.sum(Short_Heigths[3])+np.sum(Fondo_Heigths[3])+np.sum(Short_Heigths[5])+np.sum(Fondo_Heigths[5]))
Errorbranch =np.sqrt((1/(TotalSP + TotalDP) - TotalSP/(TotalSP+TotalDP)**2)**2 * ErrorSP**2 + (TotalSP/(TotalSP+TotalDP)**2)**2*ErrorDP**2)
DetectionEfficiency = 100*TotalDP/10e6
ErrorDetectionEfficiency = 100*np.sqrt(TotalDP)/10e6
Ratio = TotalSP/TotalDP
ErrorRatio = np.sqrt((1/(TotalDP**2))*(ErrorSP**2)+((TotalSP/(TotalDP**2))**2)*(ErrorDP**2))
print(ErrorRatio)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment