Commit 5991913f authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

agrego cambio de cptconmicromocion3

parent 78bc9727
......@@ -905,7 +905,7 @@ De la 1 a la 11 ajustan bien
"""
#from EITfit.MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels
from EITfit.lolo_modelo_full_8niveles import PerformExperiment_8levels_MM
from scipy.optimize import curve_fit
import time
......@@ -1008,8 +1008,9 @@ for selectedcurve in SelectedCurveVec:
do_fit = True
if do_fit:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 25e6), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3, 40e6)))
print(1)
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3, 32e6], bounds=((0, -50, 0, 0, 0, 0, 0, 0, 31e6), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3, 34e6)))
print(2)
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
......@@ -1052,7 +1053,7 @@ Grafico distintas variables que salieron del SUper ajuste
import seaborn as sns
paleta = sns.color_palette("rocket")
medfin = 12
medfin = 11
voltages_dcA = Voltages[0][1:medfin]
......@@ -1066,9 +1067,9 @@ def hiperbola(x,a,b,c,x0):
hiperbola_or_linear = True
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec[:medfin-1],p0=(100,0.1,1,-0.15))
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA[0:9],Betas_vec[0:9],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
xhip = np.linspace(-0.23,0.055,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[0:medfin-1],yerr=ErrorBetas_vec[:medfin-1],fmt='o',capsize=5,markersize=5,color=paleta[1])
......@@ -1103,6 +1104,7 @@ plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec[:medfin-1]],yerr=[t*1e3 for t in ErrorTemp_vec[:medfin-1]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.axhline(0.538)
plt.yscale('log')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Temperature (mK)')
plt.grid()
......@@ -1117,15 +1119,20 @@ sino que esta a una distancia d
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec[:10],p0=(100,0.1,1,-0.15))
medfin = 11
voltages_dcA = Voltages[0][1:medfin]
xhip = np.linspace(-0.23,0.005,200)
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA[:10],Betas_vec[:10],p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.055,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec[:10],yerr=ErrorBetas_vec[:10],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.errorbar(voltages_dcA,Betas_vec[:medfin-1],yerr=ErrorBetas_vec[:medfin-1],fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
#plt.yscale('log')
plt.grid()
......@@ -1155,49 +1162,100 @@ def InverseMicromotionSpectra(beta, A, det, x0, gamma, B):
return 1/(A*P+B)
def InverseMicromotionSpectra_raw(beta, A, det, B):
def MicromotionSpectra(beta,det, gamma):
ftrap=22.1
#gamma=23
P = (jv(0, beta)**2)/(((det)**2)+(0.5*gamma)**2)
i = 1
#print(P)
while i <= 2:
P = P + ((jv(i, beta))**2)/((((det)+i*ftrap)**2)+(0.5*gamma)**2) + ((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
def InverseDerivMicromotionSpectra(beta, det, gamma):
ftrap=22.1
gamma=21
#gamma=23
#det = -gamma/2
P = ((jv(0, beta)**2)/((((det)**2)+(0.5*gamma)**2)**2))*(-2*(det))
i = 1
#print(P)
while i <= 3:
while i <= 2:
P = P + (-2*(det))*((jv(i, beta))**2)/(((((det)+i*ftrap)**2)+(0.5*gamma)**2)**2) + (-2*(det))*(((jv(-i, beta))**2)/((((det)-i*ftrap)**2)+(0.5*gamma)**2)**2)
i = i + 1
#print(P)
return A/P+B
return 1/P
def FinalTemp(beta,det, C,D):
gamma = 22
#det=-11
#D=-0.8
#C = 1.68656122e-03
#D = 6.64227010e-02
#C=0
#print(MicromotionSpectra(beta,det,gamma))
return (C*MicromotionSpectra(beta,det,gamma)+D*beta**2)*InverseDerivMicromotionSpectra(beta, det, gamma)
#return (C*MicromotionSpectra(beta,det,gamma))*InverseDerivMicromotionSpectra(beta, det, gamma)
"""
Temperatura vs beta con un ajuste exponencial
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]])
popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],p0=(1,10))
popt_exp, pcov_exp = curve_fit(expo,Betas_vec[:9],[t*1e3 for t in Temp_vec[:9]])
#popt_quad, pcov_quad = curve_fit(cuadratica,Betas_vec[:11],[t*1e3 for t in Temp_vec[:11]],p0=(1,10))
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec,[t*1e3 for t in Temp_vec],p0=(10,10,-10,1,20)) #esto ajusta muy bien
#popt_rho22, pcov_rho22 = curve_fit(InverseMicromotionSpectra,Betas_vec, [t*1e3 for t in Temp_vec],p0=(-10,-10,10,1,20)) #esto ajusta muy bien
popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:10], [t*1e3 for t in Temp_vec[:10]],p0=(-10, -10, 1)) #esto ajusta muy bien
#popt_rho22_raw, pcov_rho22_raw = curve_fit(InverseMicromotionSpectra_raw,Betas_vec[:7], [t*1e3 for t in Temp_vec[:7]],p0=(-0.1, -10, 1)) #esto ajusta muy bien
popt_rho22_balance, pcov_rho22_balance = curve_fit(FinalTemp,Betas_vec[:9], [t*1e3 for t in Temp_vec[:9]],p0=(-10, 10,1)) #esto ajusta muy bien
print(popt_rho22_balance)
print(popt_rho22_raw)
betaslong = np.arange(0,2.8,0.01)
betaslong = np.arange(0,2*2.7,0.01)
print(f'Min temp predicted: {FinalTemp(betaslong,*popt_rho22_balance)[0]}')
print(f'Min temp predicted: {InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw)[100]}')
print(f'Detuning: {popt_rho22_balance[0]} MHz')
print(f'rho22 coeff: {popt_rho22_balance[1]}')
print(f'betasquared coeff: {popt_rho22_balance[2]}')
print(f'cociente de los coeff: {popt_rho22_balance[2]/popt_rho22_balance[1]}')
k_plot = 9
plt.figure()
plt.errorbar(Betas_vec[:10],[t*1e3 for t in Temp_vec[:10]],xerr=ErrorBetas_vec[:10], yerr=[t*1e3 for t in ErrorTemp_vec[:10]],fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.errorbar(Betas_vec[:k_plot],[t*1e3 for t in Temp_vec[:k_plot]],xerr=ErrorBetas_vec[:k_plot], yerr=[t*1e3 for t in ErrorTemp_vec[:k_plot]],fmt='o',capsize=5,markersize=5,color=paleta[3])
#plt.plot(betaslong,expo(betaslong,*popt_exp),label='Ajuste exponencial')
#plt.plot(betaslong,cuadratica(betaslong,*popt_quad),label='Ajuste cuadratico')
#plt.plot(betaslong,InverseMicromotionSpectra(betaslong,*popt_rho22),label='Ajuste cuadratico')
plt.plot(betaslong,InverseMicromotionSpectra_raw(betaslong,*popt_rho22_raw),label='Ajuste cuadratico')
plt.plot(betaslong,FinalTemp(betaslong,popt_rho22_balance[0],popt_rho22_balance[1],popt_rho22_balance[2]*1),label='Ajuste con espectro modulado')
# plt.xlim(-0.1,1.1)
#plt.ylim(0,1)
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.legend()
plt.grid()
#%%
hbar=1.05e-34
gammita = 22.1e6
kx = 2*np.pi/(0.397e-6)
kb = 1.38e-23
masita = 6.6e-26
coeff = gammita*hbar*hbar*kx*kx/(6*kb*masita)
print(coeff)
rfheatrate = coeff*popt_rho22_balance[2]/popt_rho22_balance[1]
print(f'heating rate due to rf heating: {rfheatrate*1e3} mK/s')
#%%
"""
......
......@@ -355,7 +355,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
kboltzmann = 1.38e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(1*mcalcio))
return gammaD
......@@ -372,8 +372,8 @@ def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, l
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = np.sqrt(lwg**2 + db**2)
lwp = np.sqrt(lwp**2 + db**2)
lwg = np.sqrt(lwg**2 + (0.83*db)**2)
lwp = np.sqrt(lwp**2 + (0.17*db)**2)
CC = EffectiveL(gPS, gPD, lwg, lwp)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment