Commit 5c24ed79 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

todisima

parent 6e02ebce
......@@ -231,9 +231,11 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
que forman ambos láseres.
"""
kboltzmann = 1.38e-23 #J/K
kboltzmann = 1.380649e-23 #J/K
gammaD = (2*np.pi)*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(1*mcalcio))
gammaD = 2*np.pi*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(2*mcalcio))
#gammaD = 2*np.sqrt((1/(wlg*wlg)) + (1/(wlp*wlp)) - 2*(1/(wlg*wlp))*np.cos(alpha))*np.sqrt(kboltzmann*T/(1*mcalcio))
#print('tuk')
......@@ -251,8 +253,8 @@ def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, l
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
lwg = 0.5*np.sqrt(lwg**2 + db**2)
lwp = 0.5*np.sqrt(lwp**2 + db**2)
lwg = np.sqrt(lwg**2 + db**2)
lwp = np.sqrt(lwp**2 + db**2)
CC = EffectiveL(gPS, gPD, lwg, lwp)
......@@ -288,7 +290,7 @@ def FullL_MM(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, l
L0 = np.array(np.matrix(Lfullpartial) + M)
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 3
nmax = 5
#print(nmax)
Ltemp, Omega = LtempCalculus(beta, drivefreq)
......@@ -329,7 +331,7 @@ def CPTspectrum8levels_MM(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phid
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6+0*freqStep*1e6, freqStep*1e6)
Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwp = lwg*1e6, lwp*1e6
lwg, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwp*1e6
rabG = sg*gPS
rabP = sp*gPD
......
......@@ -907,7 +907,7 @@ from scipy.optimize import curve_fit
import time
"""
MEDICION 3: SUPER AJUSTE (SA)
SUPER AJUSTE (SA)
"""
phidoppler, titadoppler = 0, 90
......@@ -943,7 +943,7 @@ drivefreq = 2*np.pi*22.135*1e6
SelectedCurveVec = [1,2,3,4,5,6,7,8,9]
#SelectedCurveVec = [4]
#SelectedCurveVec = [9]
popt_SA_vec = []
pcov_SA_vec = []
......@@ -966,13 +966,25 @@ for selectedcurve in SelectedCurveVec:
FreqsDR = Freqs[0]
CountsDR = CountsSplit[0][selectedcurve]
if selectedcurve==1:
CountsDR[100]=0.5*(CountsDR[99]+CountsDR[101])
CountsDR[105]=0.5*(CountsDR[104]+CountsDR[106])
if selectedcurve==2:
CountsDR[67]=0.5*(CountsDR[66]+CountsDR[68])
CountsDR[71]=0.5*(CountsDR[70]+CountsDR[72])
if selectedcurve==6:
CountsDR[1]=0.5*(CountsDR[0]+CountsDR[2])
CountsDR[76]=0.5*(CountsDR[75]+CountsDR[77])
if selectedcurve==7:
CountsDR[117]=0.5*(CountsDR[116]+CountsDR[118])
freqslong = np.arange(min(FreqsDR), max(FreqsDR)+FreqsDR[1]-FreqsDR[0], 0.1*(FreqsDR[1]-FreqsDR[0]))
CircPr = 1
alpha = 0
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#def FitEIT_MM(freqs, SG, SP, SCALE1, OFFSET, BETA1):
#BETA = 1.8
......@@ -993,7 +1005,7 @@ for selectedcurve in SelectedCurveVec:
do_fit = True
if do_fit:
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, 1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, 10e-3)))
popt_3_SA, pcov_3_SA = curve_fit(FitEIT_MM_single, FreqsDR, CountsDR, p0=[430, -25, 0.9, 6.2, 3e4, 1.34e3, 2, (np.pi**2)*1e-3], bounds=((0, -50, 0, 0, 0, 0, 0, 0), (1000, 0, 2, 20, 5e4, 5e4, 10, (np.pi**2)*10e-3)))
popt_SA_vec.append(popt_3_SA)
pcov_SA_vec.append(pcov_3_SA)
......@@ -1027,7 +1039,7 @@ for selectedcurve in SelectedCurveVec:
print(f'listo med {selectedcurve}')
print(popt_3_SA)
#print(f'Detdop:{popt_3_SA[1]},popt_3_SA:{popt[0]}')
#%%
"""
......@@ -1035,32 +1047,51 @@ Grafico distintas variables que salieron del SUper ajuste
"""
import seaborn as sns
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def lineal(x,a,b):
return a*x+b
paleta = sns.color_palette("rocket")
voltages_dcA = Voltages[0][1:10]
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
hiperbola_or_linear = True
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
if hiperbola_or_linear:
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
else:
poptini,pcovini = curve_fit(lineal,voltages_dcA[0:3],Betas_vec[0:3])
poptfin,pcovfin = curve_fit(lineal,voltages_dcA[4:],Betas_vec[4:])
minimum_voltage = -(poptini[1]-poptfin[1])/(poptini[0]-poptfin[0]) #voltaje donde se intersectan las rectas, es decir, donde deberia estar el minimo de micromocion
minimum_modulationfactor = lineal(minimum_voltage,*poptini) #es lo mismo si pongo *poptfin
xini = np.linspace(-0.23,-0.13,100)
xfin = np.linspace(-0.15,0.005,100)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xini,lineal(xini,*poptini))
plt.plot(xfin,lineal(xfin,*poptfin))
plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
print([t*1e3 for t in Temp_vec])
plt.figure()
plt.errorbar(voltages_dcA,[t*1e3 for t in Temp_vec],yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
......@@ -1071,6 +1102,49 @@ plt.ylabel('Temperature (mK)')
plt.grid()
#plt.ylim(0,2)
#%%
"""
Ahora hago un ajuste con una hiperbola porque tiene mas sentido, por el hecho
de que en el punto optimo el ion no esta en el centro de la trampa
sino que esta a una distancia d
"""
def hiperbola(x,a,b,c,x0):
return a*np.sqrt(((x-x0)**2+c**2))+b
popthip,pcovhip = curve_fit(hiperbola,voltages_dcA,Betas_vec,p0=(100,0.1,1,-0.15))
xhip = np.linspace(-0.23,0.005,200)
plt.figure()
plt.errorbar(voltages_dcA,Betas_vec,yerr=ErrorBetas_vec,fmt='o',capsize=5,markersize=5,color=paleta[1])
plt.plot(xhip,hiperbola(xhip,*popthip))
plt.xlabel('Endcap voltage (V)')
plt.ylabel('Modulation factor')
plt.grid()
#%%
def expo(x,tau,A,B):
return A*np.exp(x/tau)+B
"""
Temperatura vs
"""
popt_exp, pcov_exp = curve_fit(expo,Betas_vec,[t*1e3 for t in Temp_vec])
betaslong = np.arange(0,2.7,0.01)
plt.figure()
plt.errorbar(Betas_vec,[t*1e3 for t in Temp_vec],xerr=ErrorBetas_vec, yerr=[t*1e3 for t in ErrorTemp_vec],fmt='o',capsize=5,markersize=5,color=paleta[3])
plt.plot(betaslong,expo(betaslong,*popt_exp))
#plt.axvline(minimum_voltage,linestyle='dashed',color='grey')
#plt.axhline(0.538)
plt.xlabel('Modulation factor')
plt.ylabel('Temperature (mK)')
plt.grid()
#%%
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment