Commit 5d2f9455 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

agrego archivos de analisis de plots de CPT para el paper

parent 9bfef652
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211020_CPT_DosLaseres\Data
ALL_FILES = """000004585-IR_Scan_withcal_optimized
000004586-IR_Scan_withcal_optimized
000004587-IR_Scan_withcal_optimized
000004589-IR_Scan_withcal_optimized
000004590-IR_Scan_withcal_optimized
000004591-IR_Scan_withcal_optimized
000004594-IR_Scan_withcal_optimized
000004597-IR_Scan_withcal_optimized
000004639-IR_Scan_withcal_optimized
000004652-IR_Scan_withcal_optimized
000004653-IR_Scan_withcal_optimized
000004654-IR_Scan_withcal_optimized
000004655-IR_Scan_withcal_optimized
000004656-IR_Scan_withcal_optimized
000004667-IR_Scan_withcal_optimized
000004668-IR_Scan_withcal_optimized
000004669-IR_Scan_withcal_optimized
000004676-IR_Scan_withcal_optimized
000004680-IR_Scan_withcal_optimized
000004681-IR_Scan_withcal_optimized
000004690-IR_Scan_withcal_optimized"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\artiq_master\results\2021-07-14\16
Counts = []
Freqs = []
AmpTisa = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(i)
print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
#%%
j = 4 #Amp tisa = 0
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 6 #Amp tisa = 0.05
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0.05')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
plt.title(r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
#%%
j = 4 #Amp tisa = 0
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 5 #Amp tisa = 0.1
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0.10')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
plt.title(r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
#%%
j = 4 #Amp tisa = 0
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 3 #Amp tisa = 0.15
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Amp Tisa = 0.16')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
plt.title(r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
#%%
j = 3 #Amp tisa = 0.15, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 7 #Amp tisa = 0.15, pol edcl=pi, pol tisa = smsm
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Pol ECDL: $\pi$, pol TISA: $\sigma_+ + \sigma_-$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
plt.ylim(0, 550)
plt.title('Amp Tisa = 0.16')
#%%
j = 3 #Amp tisa = 0.15, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 7 #Amp tisa = 0.15, pol edcl=pi, pol tisa = smsm
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Pol ECDL: $\pi$, pol TISA: $\sigma_+ + \sigma_-$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 4 #Amp tisa = 0
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Amp Tisa = 0, Pol ECDL: $\sigma_+ + \sigma_-$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
plt.legend()
plt.ylim(0, 650)
plt.title('Amp Tisa = 0.16')
#%%
### NUEVAS MEDICIONES ###
j = 8 #Amp tisa = 0.15, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=r'Pol ECDL: $\sigma_+ + \sigma_-$, pol TISA: $\pi$')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#%% LA MEJOR DE TODAS CON 4 PICOS SIN TISA
j = 9 #Amp tisa = 0, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=r'Amp Tisa = 0')
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
BestF = [2*f*1e-6 - 436 for f in Freqs[j]]
BestC = Counts[j]
j = 11 #Amp tisa = 0.14, pol edcl=smsm, pol tisa = pi
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=r'Amp Tisa = 0.14')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 13 #Amp tisa = 0.15, pol edcl=smsm, pol tisa = pi
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=r'Amp Tisa = 0.06')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
#%% LA MEJOR DE TODAS CON 4 PICOS SIN TISA
j = 14 #Amp tisa = 0, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=f'Amp Tisa = {AmpTisa[j]}')
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 15 #Amp tisa = 0.14, pol edcl=smsm, pol tisa = pi
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=f'Amp Tisa = {AmpTisa[j]}')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 16 #Amp tisa = 0.14, pol edcl=smsm, pol tisa = pi
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', markersize=3, linewidth=1, label=f'Amp Tisa = {AmpTisa[j]}')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
plt.title('Mediciones de noche del jueves')
#%%
j = 18 #Amp tisa = 0, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([f*1e-6 for f in Freqs[j]], Counts[j], 'o', markersize=3, linewidth=1, label=f'Amp Tisa = {AmpTisa[j]}')
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 19
plt.plot([f*1e-6 for f in Freqs[j]], Counts[j], 'o', markersize=3, linewidth=1, label=f'Amp Tisa = {AmpTisa[j]}')
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.title('Referencia para mediciones del viernes')
#%%
j = 9 #Amp tisa = 0, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o', markersize=3, linewidth=1)
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.axvline(419, linestyle='--', linewidth=1, color='red', label='Detuning UV = -22 MHz')
plt.legend()
#%%
j = 20 #Amp tisa = 0, pol edcl=smsm, pol tisa = pi
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o', markersize=3, linewidth=1)
#plt.errorbar([2*f*1e-6 for f in Freqs[j]], Counts[j], np.sqrt(np.array(Counts[j])))
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts')
plt.grid()
plt.axvline(423, linestyle='--', linewidth=1, color='red', label='Detuning UV = -17 MHz')
plt.legend()
\ No newline at end of file
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211026_CPT_DosLaseres_v02\Data
ALL_FILES = """000004758-IR_Scan_withcal_optimized
000004759-IR_Scan_withcal_optimized
000004760-IR_Scan_withcal_optimized
000004761-IR_Scan_withcal_optimized
000004762-IR_Scan_withcal_optimized
000004768-IR_Scan_withcal_optimized
000004769-IR_Scan_withcal_optimized
000004770-IR_Scan_withcal_optimized
000004771-IR_Scan_withcal_optimized
000004800-IR_Scan_withcal_optimized
000004801-IR_Scan_withcal_optimized
000004802-IR_Scan_withcal_optimized
000004805-IR_Scan_withcal_optimized
000004806-IR_Scan_withcal_optimized
000004807-IR_Scan_withcal_optimized
000004808-IR_Scan_withcal_optimized
000004809-IR_Scan_withcal_optimized
000004810-IR_Scan_withcal_optimized
000004811-IR_Scan_withcal_optimized_superfine
000004812-IR_Scan_withcal_optimized_superfine
000004813-IR_Scan_withcal_optimized_superfine
000004814-IR_Scan_withcal_optimized_superfine
000004815-IR_Scan_withcal_optimized_superfine
000004816-IR_Scan_withcal_optimized"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\artiq_master\results\2021-07-14\16
Counts = []
Freqs = []
AmpTisa = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(i)
print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
#%%
j = 0 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.3
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 1 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
j = 2 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.3
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#%%
j = 3 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 4
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
#%%
j = 5 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 6
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 7
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 8
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#plt.legend()
#%%
#Variando pot repump de menos a mas
j = 9
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 10
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#%%
#Variando pot repump de menos a mas
j = 2
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
\ No newline at end of file
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
ALL_FILES = """000004961-IR_Scan_withcal_optimized
000004962-IR_Scan_withcal_optimized
000004963-IR_Scan_withcal_optimized
000004964-IR_Scan_withcal_optimized
000004965-IR_Scan_withcal_optimized
000004972-IR_Scan_withcal_optimized
000004973-IR_Scan_withcal_optimized
000004974-IR_Scan_withcal_optimized
000004975-IR_Scan_withcal_optimized
000004976-IR_Scan_withcal_optimized
000004977-IR_Scan_withcal_optimized
000004978-IR_Scan_withcal_optimized
000004979-IR_Scan_withcal_optimized
000004988-IR_Scan_withcal_optimized
000004989-IR_Scan_withcal_optimized
000004990-IR_Scan_withcal_optimized
000004991-IR_Scan_withcal_optimized
000004992-IR_Scan_withcal_optimized
000004993-IR_Scan_withcal_optimized
000004994-IR_Scan_withcal_optimized
000004995-IR_Scan_withcal_optimized
000004996-IR_Scan_withcal_optimized
000004997-IR_Scan_withcal_optimized
000004998-IR_Scan_withcal_optimized
000005003-IR_Scan_withcal_optimized
000005004-IR_Scan_withcal_optimized
000005005-IR_Scan_withcal_optimized
000005006-IR_Scan_withcal_optimized
000005007-IR_Scan_withcal_optimized"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(ALL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
Counts = []
Freqs = []
AmpTisa = []
No_measures = []
for i, fname in enumerate(ALL_FILES.split()):
print(i)
print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
# Aca hago algo repugnante para poder levantar los strings que dejamos
# que además tenian un error de tipeo al final. Esto no deberá ser necesario
# cuando se solucione el error este del guardado.
Freqs.append(np.array(data['datasets']['IR_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
#%%
j = 4 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.3
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.ylim(1400, 5000)
plt.grid()
#%%
j = 1 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
j = 2 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.3
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 3 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 4
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.legend()
#%%
j = 5 #Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 6
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#%%
j = 8
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 9
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 10
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='Cooling amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
#%%
j = 5
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='CPT amp uv = 0.3')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 10
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
#plt.figure()
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='CPT amp uv = 0.26')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 11
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='CPT amp uv = 0.22')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
j = 12
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label='CPT amp uv = 0.18')
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
#%% MENOS ESTADISTICA PERO DAN BIEN
VecPots = [0.3, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15]
jvec = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
#Amp tisa = 0, amp cpt uv = 0.3, cooling amp uv = 0.26
plt.figure()
i = 0
for j in jvec:
plt.plot([2*f*1e-6 for f in Freqs[j]], Counts[j], 'o-', label=f'CPT amp uv = {jvec[i]}')
i = i + 1
plt.xlabel('Frecuencia MHz)')
plt.ylabel('counts')
plt.grid()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment