Commit 9034d4f4 authored by Marcelo Luda's avatar Marcelo Luda

tuneando superajuste en un archivo aparte

parent 2055cac6
......@@ -1854,7 +1854,7 @@ if False:
for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
print(var)
......@@ -1863,8 +1863,6 @@ if False:
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('PARAMETROS.npz', **GUARDAR )
np.savez('PARAMETROS.npz', **GUARDAR )
......@@ -112,31 +112,24 @@ CountsSplit_2ions = []
CountsSplit_2ions.append(Split(Counts[4],len(Freqs[4])))
#%% Cargo parámetros fiteados de antes
#%% Definiciones de Numba
@jit
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP, plot=False):
#BETA = 1.8
# SG = 0.6
# SP = 8.1
# TEMP = 0.2e-3
PARAMETROS = np.load('analisis_superajuste_PARAMETROS.npz',allow_pickle=True)
for var_name in PARAMETROS.keys():
globals()[var_name] = PARAMETROS[var_name]
print(f'loaded: {var_name}')
freqs = [2*f*1e-6-offset for f in Freqs]
Detunings, Fluorescence1 = PerformExperiment_8levels_MM(SG, SP, gPS, gPD, DetDoppler, u,
DopplerLaserLinewidth, ProbeLaserLinewidth,
TEMP, alpha, phidoppler, titadoppler,
phiprobe, titaprobe, BETA1, drivefreq,
min(freqs), max(freqs)+(freqs[1]-freqs[0]),
freqs[1]-freqs[0], circularityprobe=CircPr,
plot=False, solvemode=1, detpvec=None)
ScaledFluo1 = np.array([f*SCALE1 + OFFSET for f in Fluorescence1])
return ScaledFluo1
if False:
# Esto es para correr en caso de necesidad de limpiar todos los vectores de parametros
print('Limpio los vectores de parámetros')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(f'del {var}')
del(globals()[var])
#%% Definiciones de Numba
@jit
def FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
......@@ -160,6 +153,14 @@ def FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BET
@jit
def FitEIT_MM_single(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP):
"Esta verison de la función devuelve sólo el eje y, para usar de modelo en un ajuste"
return FitEIT_MM_single_plot(Freqs, offset, DetDoppler, SG, SP, SCALE1, OFFSET, BETA1, TEMP)[0]
#%%
"""
AHORA INTENTO SUPER AJUSTES O SEA CON OFFSETXPI Y DETDOPPLER INCLUIDOS
......@@ -280,7 +281,8 @@ if not 'popt_SA_vec' in globals().keys() or len(popt_SA_vec)==0:
FittedCounts_vec.append(FittedEITpi_3_SA_long)
#%%
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Graficamos todos los fiteos
# tmp_datos=(Detuningsshort_vec,Counts_vec,Detuningslong_vec,FittedCounts_vec,SelectedCurveVec)
......@@ -322,6 +324,32 @@ for ax in axx[:,0]:
for ax in axx[-1,:]:
ax.set_xlabel('Detuning (MHz)')
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%% Inspección de parámetros
param_names = 'offset DetDoppler SG SP SCALE1 OFFSET BETA1 TEMP'.split()
err_vecs = np.array([ np.sqrt(np.diag(el)) for el in pcov_SA_vec ])
num_med = np.arange(len(pcov_SA_vec)) +1
fig, axx = plt.subplots( len(popt_SA_vec[0]),1, figsize=(13,8) , constrained_layout=True, sharex=True , sharey=False )
fig.set_constrained_layout_pads(w_pad=2/72, h_pad=2/72, hspace=0, wspace=0)
for ax,param_vec,err_vec,par_name in zip(axx,popt_SA_vec.T,err_vecs.T,param_names) :
ax.plot(num_med, param_vec, '.-')
ax.errorbar( num_med, param_vec, yerr=err_vec,
fmt='s', mfc='none', elinewidth = 1, capsize=3, ms=1)
ax.grid(True, ls=":", color='lightgray')
ax.set_ylabel(par_name)
ax.set_xticks(num_med)
ax.set_xlabel('Num. de medición')
#%%
"""
Grafico distintas variables que salieron del SUper ajuste
......@@ -556,22 +584,22 @@ plt.errorbar(np.arange(0,9,1),[popt_1[ki],popt_2[ki],popt_3[ki],popt_4[ki],popt_
if False:
GUARDAR = {}
for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
print(var)
GUARDAR[var] = globals()[var]
print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('pop') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('pcov') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
# for var in [ kk for kk in globals().keys() if kk.startswith('Fitted') ]:
# print(var)
# GUARDAR[var] = globals()[var]
# print('')
for var in [ kk for kk in globals().keys() if kk.endswith('_vec') ]:
print(var)
GUARDAR[var] = globals()[var]
np.savez('PARAMETROS.npz', **GUARDAR )
np.savez('analisis_superajuste_PARAMETROS.npz', **GUARDAR )
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment