Commit a11ff84c authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

agrego meds xdxd

parent 81139a56
This source diff could not be displayed because it is too large. You can view the blob instead.
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
#Mediciones barriendo angulo del TISA y viendo kicking de resonancias oscuras
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230713_EspectrosCristal6iones/Data/')
MOTIONAL_FILES = """000013216-IR_Scan_withcal_optimized_andor
"""
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
print(SeeKeys(MOTIONAL_FILES))
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20211101_CPT_DosLaseres_v03\Data
CountsRoi1 = []
CountsRoi2 = []
CountsRoi3 = []
CountsRoi4 = []
CountsRoi5 = []
CountsRoi6 = []
CountsRoi7 = []
#Amplitudes = []
IR1_Freqs = []
#IR_amps = []
for i, fname in enumerate(MOTIONAL_FILES.split()):
print(str(i) + ' - ' + fname)
data = h5py.File(fname+'.h5', 'r')
#Amplitudes.append(np.array(data['datasets']['amplitudes']))
CountsRoi1.append(np.array(data['datasets']['counts_roi1']))
#CountsRoi2.append(np.array(data['datasets']['counts_roi2']))
#CountsRoi3.append(np.array(data['datasets']['counts_roi3']))
#CountsRoi4.append(np.array(data['datasets']['counts_roi4']))
#CountsRoi5.append(np.array(data['datasets']['counts_roi5']))
#CountsRoi6.append(np.array(data['datasets']['counts_roi6']))
#CountsRoi7.append(np.array(data['datasets']['counts_roi7']))
IR1_Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
#IR_amps.append(np.array(data['datasets']['IR1_measurement_amp']))
#%%
"""
En cristal de 7 iones (uno de ellos oscuro) veo espectros. Primero espectros uv.
La roi1 es la general. Las demas son de cada uno de los 6 ioens brillantes del cristal.
"""
i = 0
jvec=[0]
#CountsRois = [CountsRoi2, CountsRoi3, CountsRoi4, CountsRoi5, CountsRoi6, CountsRoi7]
CountsRois = [CountsRoi1]
plt.figure()
f=[1]
for counts in CountsRois:
plt.plot(IR1_Freqs[0][1:], [c for c in counts[0][1:]], '-o', markersize=2)
i=i+1
plt.xlabel('Frecuencia')
plt.ylabel('Cuentas ROI')
#plt.xlim(0.05,0.23)
#plt.ylim(15550,16400)
plt.grid()
plt.legend()
#%%
#mergeo mediciones porque medi variando el piezoB para tener mas rango
Frequencies_vector = []
Counts_vector = []
kfin1 = 37
kin2 = 9
for counts in [CountsRoi1, CountsRoi2, CountsRoi3, CountsRoi4, CountsRoi5, CountsRoi6, CountsRoi7]:
Frequencies_vector.append([1e-6*2*f for f in [Desplazamientos[4]+f for f in UV_Freqs[5][1:kfin1]]+list(UV_Freqs[2][kin2:])])
Counts_vector.append(list(counts[5][1:kfin1])+list(counts[2][kin2:]))
ivecs = [3,4]
#ivecs = [2, 5, 6]
#ivecs = [1]
plt.figure()
for i in range(len(Frequencies_vector)):
if i in ivecs:
plt.plot(Frequencies_vector[i], Counts_vector[i],'-o')
plt.grid()
plt.xlabel('Frequency (MHz)')
plt.ylabel('Counts')
#%%
ftrap=22.1
#ahora intento ajustarlos con modelo con micromocion
from scipy.special import jv
from scipy.optimize import curve_fit
def MicromotionSpectra(det, A, beta, x0, gamma, offset):
ftrap=22.1
#gamma=30
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+offset
i = 1
#print(P)
while i <= 1:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
popt_vec = []
pcov_vec = []
#uso como refe k=3
jref=3
popt_ref, pcov_ref = curve_fit(MicromotionSpectra, Frequencies_vector[jref], Counts_vector[jref], p0=[1000, 2, 274, 90, 14000], bounds=((0,0,200,20,0),(1e7,100,600,1000,25650)))
freqslong = np.arange(min(Frequencies_vector[jref]), max(Frequencies_vector[jref])+100, (Frequencies_vector[jref][1]-Frequencies_vector[jref][0])*0.01)
print(popt_ref)
plt.figure()
for j in range(1,len(Frequencies_vector)):
plt.plot(Frequencies_vector[j], Counts_vector[j])
if j == jref:
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))
for i in range(5):
plt.axvline(popt_ref[2]-i*ftrap, linestyle='dashed', color='black', linewidth=1, zorder=0)
plt.grid()
#%%
for i in range(len(Frequencies_vector)):
if i != jref:
popt, pcov = curve_fit(MicromotionSpectra, Frequencies_vector[i], Counts_vector[i], p0=[popt_ref[0], 5, popt_ref[2], 60, popt_ref[4]], bounds=((popt_ref[0]-0.001*popt_ref[0],0,popt_ref[2]-0.001*popt_ref[2],0,popt_ref[4]-0.001*popt_ref[4]),(popt_ref[0]+0.001*popt_ref[0],100,popt_ref[2]+0.001*popt_ref[2],300, popt_ref[4]+0.001*popt_ref[4])))
popt_vec.append(popt)
pcov_vec.append(pcov)
else:
popt_vec.append(popt_ref)
pcov_vec.append(pcov_ref)
ftrap=22.1
jeval=1
freqslong = np.arange(min(Frequencies_vector[jeval]), max(Frequencies_vector[jeval])+100, (Frequencies_vector[jeval][1]-Frequencies_vector[jeval][0])*0.01)
print(popt_vec[jeval])
plt.figure()
plt.plot(Frequencies_vector[jeval], Counts_vector[jeval])
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt_ref))
plt.axvline(popt_ref[2], linestyle='dashed')
plt.axvline(popt_ref[2]-ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+2*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]-3*ftrap, linestyle='dashed')
plt.axvline(popt_ref[2]+3*ftrap, linestyle='dashed')
......@@ -12,10 +12,14 @@ from scipy import interpolate
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220106_CPT_DosLaseres_v08_TISA_DR\Data
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230713_EspectrosCristal6iones/Data/')
os.chdir('/home/nico/Documents/artiq_experiments/analisis/plots/20230720_EspectrosCristal2iones/Data/')
MOTIONAL_FILES = """000013216-IR_Scan_withcal_optimized_andor
MOTIONAL_FILES = """000013489-IR_Scan_withcal_optimized_andor
000013490-IR_Scan_withcal_optimized_andor
000013491-IR_Scan_withcal_optimized_andor
000013493-IR_Scan_withcal_optimized_andor
000013494-IR_Scan_withcal_optimized_andor
"""
......@@ -58,16 +62,18 @@ for i, fname in enumerate(MOTIONAL_FILES.split()):
En cristal de 2 iones veo espectros cpt.
"""
i = 0
CountsRois = [CountsRoi1, CountsRoi2]
medvec = [0,1,2,3,4]
plt.figure()
f=[1]
for counts in CountsRois:
plt.plot(IR1_Freqs[0][1:], [c for c in counts[0][1:]], '-o', markersize=2)
i=i+1
for med in medvec:
#CountsRois = [CountsRoi1[med], CountsRoi2[med]]
CountsRois = [CountsRoi2[med]]
i=0
for counts in CountsRois:
plt.plot(IR1_Freqs[0][1:], [c for c in counts[1:]], '-o', markersize=2)
i=i+1
plt.xlabel('Frecuencia')
plt.ylabel('Cuentas ROI')
#plt.xlim(0.05,0.23)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment