Commit c0518a5c authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto

analisis

parent 2ce695c1
...@@ -172,7 +172,7 @@ plt.plot(freqslongpi, FittedEITpi) ...@@ -172,7 +172,7 @@ plt.plot(freqslongpi, FittedEITpi)
""" """
Simulo CPTs con todos esos parámetros para distintas temperaturas Simulo CPTs con todos esos parámetros para distintas temperaturas
""" """
TempVecTeorico = np.arange(1, 21, 1) TempVecTeorico = np.arange(1, 31, 1)
CurvasTeoricas = [] CurvasTeoricas = []
for tempi in TempVecTeorico: for tempi in TempVecTeorico:
...@@ -213,8 +213,10 @@ Heating_tim = Times[meas][:maxi] ...@@ -213,8 +213,10 @@ Heating_tim = Times[meas][:maxi]
Heating_tim_ms = [t*1e3 for t in Heating_tim] Heating_tim_ms = [t*1e3 for t in Heating_tim]
Heating_med = [2*c for c in Counts_heating[meas][:maxi]] Heating_med = [2*c for c in Counts_heating[meas][:maxi]]
ErrorHeating_med = [2*np.sqrt(c) for c in Counts_heating[meas][:maxi]]
Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med] Temperaturas_interpoladas = [float(interpolado(h)) for h in Heating_med]
Error_Temperaturas_interpoladas = [float(interpolado(Heating_med[k]+0.5*ErrorHeating_med[k]))-Temperaturas_interpoladas[k] for k in range(len(Heating_med))]
plt.figure() plt.figure()
plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange') plt.plot(FluosDRTeo, [1*t for t in TempVecTeorico], 'o', color='orange')
...@@ -223,23 +225,35 @@ plt.xlabel('Cuentas de DR teoricas') ...@@ -223,23 +225,35 @@ plt.xlabel('Cuentas de DR teoricas')
plt.ylabel('Temperatura (mK)') plt.ylabel('Temperatura (mK)')
plt.figure() plt.figure()
plt.plot(Heating_med, Heating_tim, 'o', color='blue') #plt.plot(Heating_med, Heating_tim, 'o', color='blue')
plt.xlabel('Cuentas de DR medidas') plt.errorbar(Heating_tim, Heating_med, yerr=ErrorHeating_med, fmt='o', capsize=2, markersize=2)
plt.ylabel('Heating time (s)')
plt.ylabel('Cuentas de DR medidas')
plt.xlabel('Heating time (s)')
def lineal(x,a,b): def lineal(x,a,b):
return a*x+b return a*x+b
#p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas, sigma=Error_Temperaturas_interpoladas)
p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas) p1,p2 = curve_fit(lineal, Heating_tim_ms, Temperaturas_interpoladas)
#%%
"""
Grafico finalmente el plot del heating rate de la trampa
"""
plt.figure() plt.figure()
plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o') #plt.plot(Heating_tim_ms,Temperaturas_interpoladas,'o')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1)) plt.errorbar(Heating_tim_ms,Temperaturas_interpoladas, yerr=np.array(Error_Temperaturas_interpoladas), fmt='o', capsize=2, markersize=7, color='black')
plt.plot(Heating_tim_ms, lineal(np.array(Heating_tim_ms), *p1), color='red')
plt.xlabel('Heating time (ms)') plt.xlabel('Heating time (ms)')
plt.ylabel('Temperature (mK)') plt.ylabel('Temperature (mK)')
plt.title(f'Heating rate: {round(p1[0],2)} mK/ms') plt.grid()
plt.title(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')
print(f'Heating rate: {round(p1[0],2)} mK/ms') print(f'Heating rate: ({round(p1[0],2)} +- {round(np.sqrt(p2[0][0]),2)}) mK/ms')
#%% #%%
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment