#plt.errorbar([b*1e3 for b in Bvec], MaxsPotsExp/propor, xerr=1e3*MeanError/(2*np.pi)/c, yerr=yerr0/propor, color=colores[0], fmt="o", markersize=4, zorder=3, elinewidth=1)
plt.plot([f*1e-9forfinConvertBfieldtoLarmor(CamposVector2)],[r*1e-12/((2*np.pi)**2)forrinConvertToRabiSq(RabiVector2,2*np.pi*1.35e6)],linestyle='dashed',linewidth=1.,color='grey')#esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
plt.plot([(4/5)*f*1e-9forfinConvertBfieldtoLarmor(CamposVector2)],[r*1e-12/((2*np.pi)**2)forrinConvertToRabiSq(RabiVector2,2*np.pi*1.35e6)],linestyle='dashed',linewidth=1.,color='grey')#esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica
#plt.ylabel(r'Rabi Frequency Squared (MHz$^2$)', fontsize=12, fontname='STIXGeneral')
#plt.plot([f*1e-9 for f in ConvertBfieldtoLarmor(CamposVector2)], [15*(r*1e-12/((2*np.pi)**2))/popt for r in ConvertToRabiSq(RabiVector2,2*np.pi*1.35e6)], linestyle='dashed', linewidth=1., color='grey') #esto viene del threeLevel_2repumps_CPTPlotter.py de Figura CPT Teorica #esto seria con pendiente 15 que seria lo que da la teoria con el factor de lande correspondiente
#plt.plot([(r/((2*np.pi)**2))*1e-12 for r in ConvertToRabiSq(PotsLong,2*np.pi*1.35e6)],FuncTest(np.array(PotsLong),*popt),color=colorsselected[j], linewidth=0.9, zorder=5)