Commit e7524aa0 authored by Muriel Bonetto's avatar Muriel Bonetto

cambios sobre el codigo para fitear las mediciones variando la temperatura:...

cambios sobre el codigo para fitear las mediciones variando la temperatura: agregue meterla con la velocidad y con sidebands. La estructura de fiteo es distinta a la de nico, está todo en cpt plotter
parent e933e893
...@@ -110,7 +110,7 @@ plt.xlabel('Frecuencia (MHz)') ...@@ -110,7 +110,7 @@ plt.xlabel('Frecuencia (MHz)')
plt.ylabel('counts') plt.ylabel('counts')
plt.grid() plt.grid()
plt.legend() plt.legend()
plt.savefig('Ejemplo_CPT_temperaturas_distintas.png')
#%% #%%
from EITfit.threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit from EITfit.threeLevel_2repumps_AnalysisFunctions import CalculoTeoricoDarkResonances_8levels, GetMinimaInfo, GetPlotsofFluovsAngle_8levels, PerformExperiment_8levels, FindDRFrequencies, FindRelativeFluorescencesOfDR, GenerateNoisyCPT, SmoothNoisyCPT, GetFinalMaps, GenerateNoisyCPT_fixedRabi, GenerateNoisyCPT_fit
from EITfit.threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex from EITfit.threeLevel_2repumps_AnalysisFunctions import MeasureRelativeFluorescenceFromCPT, IdentifyPolarizationCoincidences, RetrieveAbsoluteCoincidencesBetweenMaps, GetClosestIndex
......
...@@ -17,20 +17,63 @@ from MM_eightLevel_2repumps_python_scripts import CPTspectrum8levels,CPTspectrum ...@@ -17,20 +17,63 @@ from MM_eightLevel_2repumps_python_scripts import CPTspectrum8levels,CPTspectrum
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
import random import random
from scipy.signal import savgol_filter as sf from scipy.signal import savgol_filter as sf
from scipy.stats import norm
def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False):
def PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None):
""" """
solvemode=1: resuelve con np.linalg.solve solvemode=1: resuelve con np.linalg.solve
solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv solvemode=2: resuelve invirtiendo L con la funcion np.linalg.inv
""" """
tinicial = time.time() kboltz = 1.380649e-23
ProbeDetuningVectorL, Fluovector = CPTspectrum8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe, beta, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False, solvemode=1) m = 6.6551079e-26
tfinal = time.time() kg = np.pi * 2/397 *1e9
kp = np.pi * 2/866 *1e9
if detpvec is None:
detpvec = np.arange(freqMin,freqMax,freqStep)
if boltzmann == True:
FluorescencesVel = []
sigmaT = np.sqrt(kboltz*T/m)
velvec = np.linspace(-4*sigmaT,4*sigmaT,100)
MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT)
for i in range(len(velvec)):
detVel = (detpvec - kp*velvec[i])/(2*np.pi*1e6)
_, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler-kg*velvec[i]/(2*np.pi*1e6),u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=detVel)
FluorescencesVel.append(Fluorescence)
FluorescencesVel = np.array(FluorescencesVel)
MBprobMat = np.tile(MBprobVec,(FluorescencesVel.shape[1],1)).T
Fluorescence = np.trapz(FluorescencesVel*MBprobMat,velvec,axis = 0)
ProbeDetuningVectorL = np.arange(freqMin,freqMax,freqStep)
elif dephasing == True:
tinicial = time.time()
ProbeDetuningVectorL, Fluorescence = CPTspectrum8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, detpvec = detpvec, plot=False, solvemode=1)
tfinal = time.time()
else:
drivefreq =2*np.pi* 1e3
FluorescencesVel = []
sigmaT = np.sqrt(T*kboltz/m)
velvec = np.linspace(-4*sigmaT,4*sigmaT,100)
MBprobVec = norm.pdf(velvec,loc = 0, scale = sigmaT)
betagVec = velvec*kg/drivefreq
betapVec = velvec*kp/drivefreq
for i in range(len(betagVec)):
betag,betap = betagVec[i],betapVec[i]
Frequencies, Fluorescence = CPTspectrum8levels( sg, sp, gPS, gPD, DetDoppler,u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0,alpha, phidoppler, titadoppler, phiprobe, titaprobe,circularityprobe, betag, betap, drivefreq, freqMin=freqMin, freqMax=freqMax, freqStep=freqStep, plot=False,detpvec=None)
FluorescencesVel.append(Fluorescence)
FluorescencesVel = np.array(FluorescencesVel)
MBprobMat = np.tile(MBprobVec,(FluorescencesVel.shape[1],1)).T
Fluorescence = np.trapz(FluorescencesVel*MBprobMat,velvec,axis = 0)
ProbeDetuningVectorL = Frequencies
#print('Done, Total time: ', round((tfinal-tinicial), 2), "s") #print('Done, Total time: ', round((tfinal-tinicial), 2), "s")
return ProbeDetuningVectorL, Fluovector return ProbeDetuningVectorL, Fluorescence
def PerformExperiment_8levels_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None): def PerformExperiment_8levels_vel(velvect,titavect,phivect,velprob,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None):
""" """
...@@ -63,10 +106,10 @@ def SmoothNoisyCPT(Fluo, window=11, poly=3): ...@@ -63,10 +106,10 @@ def SmoothNoisyCPT(Fluo, window=11, poly=3):
def fitCPT_8levels_db(Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False): def fitCPT_8levels(Freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe,beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False,dephasing = False, boltzmann = False ):
def SpectrumForFit(Freq,sg,sp,T,DetDoppler): def SpectrumForFit(Freq,sg,sp,T,DetDoppler):
freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None) freq,spectra = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=Freq)
return spectra return spectra
......
...@@ -10,7 +10,7 @@ Created on Tue Sep 1 17:58:39 2020 ...@@ -10,7 +10,7 @@ Created on Tue Sep 1 17:58:39 2020
import os import os
import numpy as np import numpy as np
from MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels, GenerateNoisyCPT_vel, SmoothNoisyCPT, PerformExperiment_8levels_vel,fitCPT_8levels_db from MM_eightLevel_2repumps_AnalysisFunctions import PerformExperiment_8levels, GenerateNoisyCPT_vel, SmoothNoisyCPT, PerformExperiment_8levels_vel
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import time import time
import h5py import h5py
...@@ -107,61 +107,66 @@ Tmat = np.zeros((len(s12vec),len(s23vec))) ...@@ -107,61 +107,66 @@ Tmat = np.zeros((len(s12vec),len(s23vec)))
Tvec_ajuste = np.zeros(len(Tvec)) Tvec_ajuste = np.zeros(len(Tvec))
phivect = 0 phivect = 0
T = 10e-3
titavect = np.linspace(0,2*np.pi,100) titavect = np.linspace(0,2*np.pi,100)
beta = 0 betag = 0
betap = 0
alpha = 0 alpha = 0
for l in range(len(Tvec)): Freq,Fluo_sb = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = False)
for i in range(len(s12vec)): Freq,Fluo_boltz = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = False, boltzmann = True)
for j in range(len(s23vec)): Freq,Fluo_deph = PerformExperiment_8levels(sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, betag, betap, drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, dephasing = True, boltzmann = False)
#print(i,j)
sg = s12vec[i] #%%
sp = s23vec[j] plt.plot(Freq,Fluo_boltz,label = 'Velocities')
plt.plot(Freq,Fluo_sb,label = 'Sideband')
T = Tvec[l] plt.plot(Freq,Fluo_deph, label = 'Dephasing')
velvect = np.linspace(-4 * np.sqrt(kboltz*T/m),4 * np.sqrt(kboltz*T/m),100) plt.legend()
#%%
MB_prob_vec = np.array(MB_prob_1d(velvect,T))
os.chdir('/home/muri/nubeDF/Documents/codigos/artiq_experiments/analisis/plots/20230920_CPT_TemperatureSens_v2/Data/')
freq, Fluo = GenerateNoisyCPT_vel(velvect,titavect,phivect,MB_prob_vec,sg, sp, gPS, gPD, DetDoppler, u, DopplerLaserLinewidth, ProbeLaserLinewidth, 0, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta,drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False, solvemode=1, detpvec=None, noiseamplitude=0.001) CPT_FILES = """000011345-IR_Scan_withcal_optimized
000011331-IR_Scan_withcal_optimized
plt.show() """
plt.figure() for i in range(0,9):
CPT_FILES = CPT_FILES + f'0000153{19 + i}-IR_Scan_withcal_optimized\n'
CPT_FILES = CPT_FILES
a = plt.plot(freq,Fluo,'.',label = 'T = {:.1f} mK'.format(T*1000))
def SeeKeys(files):
freq, Fluo_doppler,popt,pcov = fitCPT_8levels_db(freq,Fluo,sg,sp,gPS,gPD,DetDoppler,u,DopplerLaserLinewidth, ProbeLaserLinewidth, T, alpha, phidoppler, titadoppler, phiprobe, titaprobe, beta,drivefreq, freqMin, freqMax, freqStep, circularityprobe=1, plot=False) for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
Tmat[i,j] = popt[2] print(fname)
print(list(data['datasets'].keys()))
plt.plot(freq,Fluo_doppler,'-') print(SeeKeys(CPT_FILES))
plt.grid()
plt.legend() Counts = []
plt.xlabel(' Detuning repump (MHz)') Freqs = []
plt.ylabel('Fluorescence')
plt.title('s12 = {:.2f} s23 = {:.2f} T = {:.1f} mK Det = {:.1f}\n s12 = {:.2f} s23 = {:.2f} T = {:.1f} mK Det = {:.1f}'.format(sg,sp,T*1000,DetDoppler,popt[0],popt[1],popt[2]*1000,popt[3]/1e6)) AmpTisa = []
UVCPTAmp = []
plt.savefig('ajuste_espectros_s12_{:.2f}_s23_{:.2f}_T_{:.0f}_mK_gamma_un_cuarto.png'.format(sg,sp,T*1000)) No_measures = []
''' for i, fname in enumerate(CPT_FILES.split()):
fig2,ax2 = plt.subplots() print(str(i) + ' - ' + fname)
im = ax2.imshow(diferencias.T*100,extent = (s12vec[0],s12vec[-1],s23vec[0],s23vec[-1]),origin = 'lower',aspect = 'auto') #print(fname)
#plt.xlabel('Detuning repump (MHz)') data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
#plt.ylabel('Fluorescence (A.U.)')
plt.colorbar(im,ax = ax2,label = 'Porcentaje diferencia' ) # Aca hago algo repugnante para poder levantar los strings que dejamos
ax2.set_title('T = {:} mK'.format(1000*T)) # que además tenian un error de tipeo al final. Esto no deberá ser necesario
ax2.set_xlabel('s12') # cuando se solucione el error este del guardado.
ax2.set_ylabel('s23') Freqs.append(np.array(data['datasets']['IR1_Frequencies']))
fig2.savefig('mapa_comparacion_T_{:.2f}_gamma_un_cuarto.png'.format(T*1000)) Counts.append(np.array(data['datasets']['counts_spectrum']))
''' #AmpTisa.append(np.array(data['datasets']['TISA_CPT_amp']))
np.save('mapa_estimacion_T_{:.2f}_gamma_un_cuarto'.format(T*1000)) UVCPTAmp.append(np.array(data['datasets']['UV_CPT_amp']))
No_measures.append(np.array(data['datasets']['no_measures']))
...@@ -105,12 +105,12 @@ def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circulari ...@@ -105,12 +105,12 @@ def HImatrix(rabG, rabP, phidoppler, titadoppler, phiprobe, titaprobe, circulari
return HI return HI
def LtempCalculus(beta, drivefreq, forma=1): def LtempCalculus(betag,betap, drivefreq, forma=1):
Hint = np.zeros((8, 8), dtype=np.complex_) Hint = np.zeros((8, 8), dtype=np.complex_)
ampg=beta*drivefreq ampg=betag*drivefreq
ampr=beta*drivefreq ampr=betap*drivefreq
Hint[0,0] = ampg Hint[0,0] = ampg
Hint[1,1] = ampg Hint[1,1] = ampg
Hint[4,4] = ampr Hint[4,4] = ampr
...@@ -256,7 +256,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3): ...@@ -256,7 +256,7 @@ def dopplerBroadening(wlg, wlp, alpha, T, mcalcio = 6.655e-23*1e-3):
def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp = 0, def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp = 0,
phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, beta=0, drivefreq=2*np.pi*22.135*1e6, T = 0, alpha = 0, circularityprobe=1): phidoppler=0, titadoppler=0, phiprobe=0, titaprobe=0, betag=0,betap = 0, drivefreq=2*np.pi*22.135*1e6, T = 0, alpha = 0, circularityprobe=1):
""" """
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M. Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
...@@ -268,7 +268,7 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp ...@@ -268,7 +268,7 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp
lwg = np.sqrt(lwg**2 + (db/2)**2)/2 lwg = np.sqrt(lwg**2 + (db/2)**2)/2
lwp = np.sqrt(lwp**2 + (db/2)**2)/2 lwp = np.sqrt(lwp**2 + (db/2)**2)/2
...@@ -309,7 +309,7 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp ...@@ -309,7 +309,7 @@ def FullL(rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = 0, lwg = 0, lwp
#ESTA PARTE ES CUANDO AGREGAS MICROMOCION #ESTA PARTE ES CUANDO AGREGAS MICROMOCION
nmax = 7 nmax = 7
#print(nmax) #print(nmax)
Ltemp, Omega = LtempCalculus(beta, drivefreq) Ltemp, Omega = LtempCalculus(betag,betap, drivefreq)
#print(factor) #print(factor)
L1 = GetL1(Ltemp, L0, Omega, nmax) L1 = GetL1(Ltemp, L0, Omega, nmax)
Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1 Lfull = L0 + L1 #ESA CORRECCION ESTA EN L1
...@@ -334,8 +334,6 @@ def FullLvel(vel,tita,phi,rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u = ...@@ -334,8 +334,6 @@ def FullLvel(vel,tita,phi,rabG, rabP, gPS = 0, gPD = 0, Detg = 0, Detp = 0, u =
Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M. Calcula el Liouvilliano total de manera explícita índice a índice. Suma aparte las componentes de las matrices M.
Es la más eficiente hasta ahora. Es la más eficiente hasta ahora.
""" """
db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T) db = dopplerBroadening(0.397e-6, 0.866e-6, alpha, T)
...@@ -406,7 +404,7 @@ Scripts para correr un experimento y hacer el análisis de los datos ...@@ -406,7 +404,7 @@ Scripts para correr un experimento y hacer el análisis de los datos
""" """
def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, beta, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, detpvec = None,plot=False, solvemode=1): def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidoppler, titadoppler, phiprobe, titaprobe, Circularityprobe, betag,betap, drivefreq, freqMin=-100, freqMax=100, freqStep=1e-1, detpvec = None,plot=False, solvemode=1):
""" """
ESTA ES LA FUNCION QUE ESTAMOS USANDO ESTA ES LA FUNCION QUE ESTAMOS USANDO
...@@ -418,12 +416,13 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp ...@@ -418,12 +416,13 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp
phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180) phidoppler, titadoppler = phidoppler*(np.pi/180), titadoppler*(np.pi/180)
phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180) phiprobe, titaprobe = phiprobe*(np.pi/180), titaprobe*(np.pi/180)
if detpvec == None: if detpvec is None:
DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6) DetProbeVector = 2*np.pi*np.arange(freqMin*1e6, freqMax*1e6, freqStep*1e6)
else: else:
DetProbeVector = detpvec*1e6 * 2*np.pi DetProbeVector = detpvec*1e6 * 2*np.pi
Detg = 2*np.pi*Detg*1e6 Detg = 2*np.pi*Detg*1e6
#lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6 #lwg, lwr, lwp = 2*np.pi*lwg*1e6, 2*np.pi*lwr*1e6, 2*np.pi*lwp*1e6
lwg, lwp = lwg*1e6, lwp*1e6 lwg, lwp = lwg*1e6, lwp*1e6
...@@ -440,7 +439,7 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp ...@@ -440,7 +439,7 @@ def CPTspectrum8levels(sg, sp, gPS, gPD, Detg, u, lwg, lwp, Temp, alpha, phidopp
for Detp in DetProbeVector: for Detp in DetProbeVector:
L = FullL(rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, beta, drivefreq, Temp, alpha, Circularityprobe) L = FullL(rabG, rabP, gPS, gPD, Detg, Detp, u, lwg, lwp, phidoppler, titadoppler, phiprobe, titaprobe, betag,betap, drivefreq, Temp, alpha, Circularityprobe)
if solvemode == 1: if solvemode == 1:
rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)])) rhovectorized = np.linalg.solve(L, np.array([int(i==0) for i in range(64)]))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment