Commit f023bff9 authored by Nicolas Nunez Barreto's avatar Nicolas Nunez Barreto
parents 8ab36c88 d6fb2ba9
......@@ -10,7 +10,14 @@ from scipy import interpolate
# Solo levanto algunos experimentos
Calib_Files = """000007155-UV_Scan_withcalib_Haeffner
000007160-UV_Scan_withcalib_Haeffner"""
000007160-UV_Scan_withcalib_Haeffner
000007161-UV_Scan_withcalib_Haeffner
000007163-UV_Scan_withcalib_Haeffner
000007165-UV_Scan_withcalib_Haeffner
000007198-UV_Scan_withcalib_Haeffner
000007209-UV_Scan_withcalib_Haeffner
000007211-UV_Scan_withcalib_Haeffner
000007212-UV_Scan_withcalib_Haeffner"""
......@@ -28,6 +35,7 @@ def SeeKeys(files):
Amps = []
Freqs = []
Counts = []
T_readouts = []
for i, fname in enumerate(Calib_Files.split()):
print(SeeKeys(Calib_Files))
......@@ -38,6 +46,7 @@ for i, fname in enumerate(Calib_Files.split()):
Amps.append(np.array(data['datasets']['UV_Amplitudes']))
Freqs.append(np.array(data['datasets']['UV_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
T_readouts.append(np.array(data['datasets']['t_readout']))
#def GetBackground(countsper100ms, )
......@@ -45,30 +54,107 @@ for i, fname in enumerate(Calib_Files.split()):
#%%
from scipy.special import jv
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + 10 #40 es el piso de ruido estimado
def Lorentzian(f, A, x0, gamma, offset):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + offset #40 es el piso de ruido estimado
j = 0 #UV_cooling en 90 MHz
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
jvec = [8] #UV_cooling en 90 MHz
portion = 0.
plt.figure()
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):])
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 208, 30, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[2])} MHz')
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.figure()
plt.plot(FreqsChosen, CountsChosen, 'o', label='4 uW')
plt.plot(freqslong, Lorentzian(freqslong, *popt), label=f'FWHM {round(popt[1])} MHz')
plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
#%%
from scipy.special import jv
from scipy.optimize import curve_fit
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2))
def MicromotionSpectra(det, A, beta, x0):
ftrap=22.1
gamma=23
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+100
i = 1
#print(P)
while i <= 2:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
print(f'Ancho medido: {round(popt[1])} MHz')
jvec = [7] #UV_cooling en 90 MHz
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 25, 208, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(MicromotionSpectra, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):],p0=[200,4,220], bounds=((-1000,-10,-300),(1000,10,300)))
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
\ No newline at end of file
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
# Solo levanto algunos experimentos
Calib_Files = """000007324-UV_Scan_withcalib_Haeffner
"""
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220503_EspectrosUVnuevos\Data
def SeeKeys(files):
for i, fname in enumerate(files.split()):
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#%%
Amps = []
Freqs = []
Counts = []
for i, fname in enumerate(Calib_Files.split()):
print(SeeKeys(Calib_Files))
print(i)
print(fname)
data = h5py.File(fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(list(data['datasets'].keys()))
Amps.append(np.array(data['datasets']['UV_Amplitudes']))
Freqs.append(np.array(data['datasets']['UV_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
#def GetBackground(countsper100ms, )
#%%
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + 10 #40 es el piso de ruido estimado
j = 0 #UV_cooling en 90 MHz
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.figure()
plt.plot(FreqsChosen, CountsChosen, 'o', label='4 uW')
plt.plot(freqslong, Lorentzian(freqslong, *popt), label=f'FWHM {round(popt[1])} MHz')
plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
import h5py
import matplotlib.pyplot as plt
import numpy as np
import sys
import re
import ast
from scipy.optimize import curve_fit
import os
from scipy import interpolate
# Solo levanto algunos experimentos
Calib_Files = """000007324-UV_Scan_withcalib_Haeffner
000007325-IR_Scan_withcal_optimized
000007326-UV_Scan_withcalib_Haeffner
000007327-IR_Scan_withcal_optimized
000007328-UV_Scan_withcalib_Haeffner
000007327-IR_Scan_withcal_optimized"""
directory = '/home/liaf-murib/Documents/Artiq/artiq_experiments/analisis/plots/20220520_EspectrosUVyCPT_descompensacion/Data/'
#carpeta pc nico labo escritorio:
#C:\Users\Usuario\Documents\artiq\artiq_experiments\analisis\plots\20220503_EspectrosUVnuevos\Data
def SeeKeys(files,directory = ''):
for i, fname in enumerate(files.split()):
data = h5py.File(directory + fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(fname)
print(list(data['datasets'].keys()))
#%%
Amps = []
Freqs = []
Counts = []
T_readouts = []
for i, fname in enumerate(Calib_Files.split()):
print(SeeKeys(Calib_Files,directory = directory))
print(i)
print(fname)
data = h5py.File(directory + fname+'.h5', 'r') # Leo el h5: Recordar que nuestros datos estan en 'datasets'
print(list(data['datasets'].keys()))
try:
Amps.append(np.array(data['datasets']['UV_Amplitudes']))
except KeyError:
Amps.append(np.array(data['datasets']['IR_Amplitudes']))
try:
Freqs.append(np.array(data['datasets']['UV_Frequencies']))
except KeyError:
Freqs.append(np.array(data['datasets']['IR_Frequencies']))
Counts.append(np.array(data['datasets']['counts_spectrum']))
T_readouts.append(np.array(data['datasets']['t_readout']))
#def GetBackground(countsper100ms, )
#%%
from scipy.special import jv
def Lorentzian(f, A, x0, gamma, offset):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2)) + offset #40 es el piso de ruido estimado
jvec = [4] #UV_cooling en 90 MHz
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
#popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 208, 30, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]-22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
#print(f'Ancho medido: {round(popt[2])} MHz')
#%%
#%%
from scipy.special import jv
from scipy.optimize import curve_fit
def Lorentzian(f, A, gamma, x0):
return (A/np.pi)*0.5*gamma/(((f-x0)**2)+((0.5*gamma)**2))
def MicromotionSpectra(det, A, beta, x0, offset):
ftrap=22.1
gamma= 29
P = A*(jv(0, beta)**2)/(((det-x0)**2)+(0.5*gamma)**2)+ offset
i = 1
#print(P)
while i <= 5:
P = P + A*((jv(i, beta))**2)/((((det-x0)+i*ftrap)**2)+(0.5*gamma)**2) + A*((jv(-i, beta))**2)/((((det-x0)-i*ftrap)**2)+(0.5*gamma)**2)
i = i + 1
#print(P)
return P
jvec = [2] #UV_cooling en 90 MHz
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(Lorentzian, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):], p0=[12000, 25, 208, 30])
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2], popt[3]), label=f'FWHM 30 MHz')
plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Ancho medido: {round(popt[1])} MHz')
"""
plt.figure()
for j in jvec:
FreqsChosen = [2*f*1e-6 for f in Freqs[j]]
CountsChosen = Counts[j]
portion = 0.
popt, pcov = curve_fit(MicromotionSpectra, FreqsChosen[int(portion*len(FreqsChosen)):], CountsChosen[int(portion*len(FreqsChosen)):],p0=[100000,1.5,220,200], bounds=((70000,0.1,200,-500),(1000000,10,300,500)))
freqslong = np.arange(min(FreqsChosen)-10, max(FreqsChosen)+10, (FreqsChosen[1]-FreqsChosen[0])*0.01)
plt.errorbar(FreqsChosen, CountsChosen, yerr=np.sqrt(np.array(CountsChosen)), fmt='o', capsize=5, markersize=5)
#plt.plot(freqslong, Lorentzian(freqslong, popt[0], popt[1], popt[2]), label=f'FWHM {round(popt[1])} MHz')
plt.plot(freqslong, MicromotionSpectra(freqslong, *popt), label='Beta ={:0.2f}'.format(popt[1]))
#plt.plot(freqslong, MicromotionSpectra(freqslong, 70000,0.2,215,220), label=f'FWHM 30 MHz')
#plt.axvline(popt[2]+2*22.1, linestyle='--', linewidth=1)
#plt.axvline(popt[2]+22.1, linestyle='--', linewidth=1)
plt.xlabel('Frecuencia (MHz)')
plt.ylabel('Cuentas')
plt.legend()
print(f'Beta medido: {popt[1]}')
print(popt)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment